6自由度机械臂python求正解代码
时间: 2023-05-30 08:03:01 浏览: 451
UR3-6自由度机械臂正逆运动学Python实现代码
5星 · 资源好评率100%
由于机械臂的结构和运动学方程的复杂性,求解机械臂的正解需要使用运动学模型和逆运动学算法。以下是一个简单的6自由度机械臂正解的python代码。
```python
import numpy as np
def forward_kinematics(theta1, theta2, theta3, theta4, theta5, theta6):
# 机械臂DH参数
d1 = 0.089159
a2 = -0.425
a3 = -0.39225
d4 = 0.10915
d5 = 0.09465
d6 = 0.0823
# 转换矩阵
T1 = np.array([
[np.cos(theta1), -np.sin(theta1), 0, 0],
[np.sin(theta1), np.cos(theta1), 0, 0],
[0, 0, 1, d1],
[0, 0, 0, 1]
])
T2 = np.array([
[np.cos(theta2), -np.sin(theta2), 0, a2*np.cos(theta2)],
[np.sin(theta2)*np.cos(-np.pi/2), np.cos(theta2)*np.cos(-np.pi/2), -np.sin(-np.pi/2), -a2*np.sin(theta2)*np.cos(-np.pi/2)],
[np.sin(theta2)*np.sin(-np.pi/2), np.cos(theta2)*np.sin(-np.pi/2), np.cos(-np.pi/2), -a2*np.sin(theta2)*np.sin(-np.pi/2)],
[0, 0, 0, 1]
])
T3 = np.array([
[np.cos(theta3), -np.sin(theta3), 0, a3*np.cos(theta3)],
[np.sin(theta3)*np.cos(-np.pi/2), np.cos(theta3)*np.cos(-np.pi/2), -np.sin(-np.pi/2), -a3*np.sin(theta3)*np.cos(-np.pi/2)],
[np.sin(theta3)*np.sin(-np.pi/2), np.cos(theta3)*np.sin(-np.pi/2), np.cos(-np.pi/2), -a3*np.sin(theta3)*np.sin(-np.pi/2)],
[0, 0, 0, 1]
])
T4 = np.array([
[np.cos(theta4), -np.sin(theta4), 0, 0],
[0, 0, -1, -d4],
[np.sin(theta4), np.cos(theta4), 0, 0],
[0, 0, 0, 1]
])
T5 = np.array([
[np.cos(theta5), -np.sin(theta5), 0, 0],
[0, 0, 1, d5],
[-np.sin(theta5), -np.cos(theta5), 0, 0],
[0, 0, 0, 1]
])
T6 = np.array([
[np.cos(theta6), -np.sin(theta6), 0, 0],
[0, 0, -1, -d6],
[np.sin(theta6), np.cos(theta6), 0, 0],
[0, 0, 0, 1]
])
# 求解正解
T = T1 @ T2 @ T3 @ T4 @ T5 @ T6
return T[:3, 3] # 返回机械臂末端坐标
if __name__ == '__main__':
theta1 = np.deg2rad(30)
theta2 = np.deg2rad(-45)
theta3 = np.deg2rad(60)
theta4 = np.deg2rad(0)
theta5 = np.deg2rad(90)
theta6 = np.deg2rad(0)
pos = forward_kinematics(theta1, theta2, theta3, theta4, theta5, theta6)
print(pos)
```
上述代码中,我们首先定义了机械臂的DH参数和转换矩阵。然后使用numpy库中的矩阵乘法运算符@,将各个转换矩阵按顺序相乘,得到机械臂的正解矩阵T。最后返回矩阵T的前三行前三列,即机械臂末端的坐标。
在main函数中,我们给出了一组关节角度,调用forward_kinematics函数求解机械臂末端的坐标,并输出结果。
阅读全文