怎么根据混淆矩阵绘制roc曲线
时间: 2023-12-28 20:26:38 浏览: 165
通过matlab绘制数据的ROC曲线,并输出TN,FP,FN,TP混淆矩阵,含仿真操作录像
5星 · 资源好评率100%
根据混淆矩阵绘制ROC曲线的步骤如下:
1. 计算真正率(True Positive Rate, TPR)和假正率(False Positive Rate, FPR)。
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
其中,TP、FN、FP、TN 分别为混淆矩阵中的真正例、假反例、假正例、真反例。
2. 绘制ROC曲线。
将计算得到的TPR和FPR分别作为纵坐标和横坐标,绘制ROC曲线。
3. 计算AUC。
AUC(Area Under Curve)是ROC曲线下的面积,用来评估分类器的性能。
下面是一个Python代码示例:
```python
import matplotlib.pyplot as plt
def plot_roc_curve(confusion_matrix):
TP = confusion_matrix[1][1]
FN = confusion_matrix[1][0]
FP = confusion_matrix[0][1]
TN = confusion_matrix[0][0]
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(FPR, TPR, 'ro')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
confusion_matrix = [[50, 10], [5, 35]]
plot_roc_curve(confusion_matrix)
```
其中,confusion_matrix为混淆矩阵,这里是一个2x2的二分类混淆矩阵。函数plot_roc_curve根据混淆矩阵计算TPR和FPR,然后绘制ROC曲线。
阅读全文