yolov5调用外接摄像头检测
时间: 2023-06-17 21:03:06 浏览: 111
要调用外接摄像头进行目标检测,首先需要确保你的摄像头能够在你的电脑上正常工作。你可以使用OpenCV库来读取摄像头的视频流。
以下是一个基本的代码示例,可以使用YoloV5模型检测摄像头捕获的视频流:
```python
import cv2
import torch
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from utils.torch_utils import select_device
# 加载模型
weights = 'yolov5s.pt'
device = select_device('0')
model = attempt_load(weights, map_location=device)
# 设置阈值和IOU阈值
conf_thres = 0.25
iou_thres = 0.45
# 读取摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
if not ret:
break
# 将帧转换为模型需要的格式
img = frame[:, :, ::-1].transpose(2, 0, 1)
img = torch.from_numpy(img).float().div(255.0).unsqueeze(0)
# 将图像输入模型并运行推理
with torch.no_grad():
detections = model(img, augment=False)[0]
detections = non_max_suppression(detections, conf_thres, iou_thres, classes=None, agnostic=False)
# 处理检测结果并绘制边界框
for detection in detections:
if detection is not None:
detection = scale_coords(img.shape[2:], detection[:, :4], frame.shape).round()
for *xyxy, conf, cls in detection:
label = f'{model.names[int(cls)]} {conf:.2f}'
cv2.rectangle(frame, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), (255, 0, 0), 2)
cv2.putText(frame, label, (int(xyxy[0]), int(xyxy[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
# 显示检测结果
cv2.imshow('YOLOv5', frame)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
这个代码示例使用了YoloV5模型来检测摄像头捕获的视频流,并将检测结果绘制在视频帧上。你可以根据自己的需求进行修改和调整。