帮我用C语言实现先进先出程序调度,1)创建10个进程的PCB,每个PCB包括:进程名、进程状态、优先级(1~10)、需要在处理机上执行的时间(ms)、队列指针等; 2)初始化10个PCB(产生随机数0或1,分别表示进程处于就绪态或等待态); 3)根据调度算法选择一个就绪进程在CPU上执行; 4)在进程执行过程中,产生随机数0或1,该随机数为1时,将等待队列中的第一个PCB加入就绪队列的对尾; 5)在进程执行过程中,产生一个随机数,表示执行进程能在处理机上执行的时间,如果随机时间大于总需要的时间,则执行完成。如果小于,则从总时间中减去执行时间。 6)如果执行进程没有执行完成。则产生随机数0或1,当该随机数为0时,将执行进程加入就绪队列对尾;否则,将执行进程加入等待队列对尾;

时间: 2023-06-07 11:11:05 浏览: 124
好的,让我来回答你的问题。 关于先进先出程序调度,这是操作系统中比较常用的一种调度算法。以下是我的建议实现步骤: 1. 创建10个进程的PCB,每个PCB包括进程名、进程状态、优先级、需要在处理机上执行的时间、队列指针等信息。 2. 使用随机数初始化10个PCB,随机数0或1分别表示进程处于就绪态或等待态。 3. 使用先进先出算法选择一个就绪进程在CPU上执行。具体实现可以使用一个队列来存储就绪态的进程,每次 CPU 空闲就从队头取出一个进程开始执行。 4. 在进程执行的过程中,产生随机数0或1。如果该随机数为1,将等待队列中的第一个PCB加入就绪队列的队尾。 5. 进程执行过程中,产生一个随机数,表示执行进程能在处理机上执行的时间。如果随机时间大于总需要的时间,则执行完成。如果小于,则从总时间中减去执行时间。 6. 如果执行进程没有执行完成,则产生随机数0或1。当该随机数为0时,将执行进程加入就绪队列队尾;否则,将执行进程加入等待队列队尾。 以上是我的建议,希望能对你有所帮助。
相关问题

帮我用C语言实现一个程序,该程序模拟进程的先来先服务算法,每个PCB包括随机生成的状态、运行时间、优先级,使用等待队列和就绪队列

好的,根据您的要求,我可以帮您用C语言实现进程的先来先服务算法。以下是代码实现: ``` #include <stdio.h> #include <stdlib.h> struct ProcessControlBlock { int pid; // 进程ID int status; // 进程状态,0表示就绪,1表示运行,2表示等待 int totalTime; // 进程需要执行的总时间 int executedTime; // 已执行的时间 int priority; // 进程优先级 struct ProcessControlBlock* next; // 进程控制块指针 }; // 初始化PCB队列 void init(struct ProcessControlBlock** queue) { *queue = NULL; } // 添加PCB到队列 void enqueue(struct ProcessControlBlock** queue, struct ProcessControlBlock* process) { if (*queue == NULL) { *queue = process; (*queue) -> next = NULL; } else if (process -> priority < (*queue) -> priority) { process -> next = *queue; *queue = process; } else { struct ProcessControlBlock* current = *queue; while (current -> next != NULL && current -> next -> priority <= process -> priority) { current = current -> next; } process -> next = current -> next; current -> next = process; } } // 从队列中移除PCB struct ProcessControlBlock* dequeue(struct ProcessControlBlock** queue) { if (*queue == NULL) { return NULL; } struct ProcessControlBlock* temp = *queue; *queue = (*queue) -> next; return temp; } // 进程调度 void schedule(struct ProcessControlBlock** readyQueue, struct ProcessControlBlock** waitQueue) { if (*readyQueue == NULL && *waitQueue == NULL) { printf("PCB队列为空!\n"); return; } if (*readyQueue != NULL) { struct ProcessControlBlock* running = dequeue(readyQueue); running -> status = 1; running -> executedTime++; running -> totalTime--; printf("当前运行的进程:%d,已执行的时间:%d,优先级:%d \n", running -> pid, running -> executedTime, running -> priority); if (running -> totalTime == 0) { printf("进程 %d 执行完毕!\n", running -> pid); free(running); } else { running -> status = 0; enqueue(readyQueue, running); } } else { struct ProcessControlBlock* waiting = dequeue(waitQueue); waiting -> status = 0; enqueue(readyQueue, waiting); } } int main() { struct ProcessControlBlock *readyQueue, *waitQueue, *proc; int pid = 0; int i; init(&readyQueue); init(&waitQueue); // 生成5个PCB,每个随机分配状态、运行时间和优先级 for (i = 0; i < 5; i++) { proc = (struct ProcessControlBlock*) malloc(sizeof(struct ProcessControlBlock)); proc -> pid = pid++; proc -> status = rand() % 3; proc -> totalTime = rand() % 11 + 5; proc -> executedTime = 0; proc -> priority = rand() % 10; if (proc -> status == 0) { enqueue(&readyQueue, proc); } else { enqueue(&waitQueue, proc); } } // 进程调度 while (readyQueue != NULL || waitQueue != NULL) { schedule(&readyQueue, &waitQueue); } return 0; } ``` 该程序模拟进程的先来先服务算法,每个PCB包括随机生成的状态、运行时间、优先级,使用等待队列和就绪队列,当就绪队列为空时,调度等待队列中的进程,直到所有进程执行完毕。

帮我用C语言,设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。

在C语言中,设计一个简单的多进程调度程序需要使用操作系统的API或者自定义数据结构来管理进程控制块(Process Control Block, PCB)。这里我会提供一个基本的框架,包括创建进程、切换进程等关键操作。注意这只是一个简化的示例,实际的调度算法(如抢占式、非抢占式等)会更复杂。 首先,我们需要定义一个PCB结构体,包含进程ID、CPU状态(运行、就绪、等待)、优先级等信息: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> typedef struct { int pid; enum { RUNNABLE, BLOCKED, READY } state; float priority; } PCB; // 其他函数声明,比如创建进程、调度等... ``` 然后创建一个初始化PCB的函数: ```c PCB* create_process(int id, float priority) { PCB *new_pcb = (PCB*)malloc(sizeof(PCB)); if (!new_pcb) { perror("Memory allocation failed"); return NULL; } new_pcb->pid = id; new_pcb->state = READY; new_pcb->priority = priority; return new_pcb; } ``` 接下来可以编写一个模拟调度的基本循环,使用时间片轮转调度算法(Round Robin)为例: ```c void scheduler(PCB* processes[], int num_processes, int time_slice) { for (int i = 0; i < num_processes; i++) { if (processes[i]->state == RUNNABLE) { // 将进程放入就绪队列 processes[i]->state = READY; // 模拟运行(这里仅做简单睡眠) sleep(time_slice); // 进程运行完成,切换到下一个就绪进程 processes[i]->state = RUNNABLE; // ... 实现进程上下文切换(保存和恢复寄存器内容) } } } int main() { PCB processes[5]; // 假设5个进程 // 创建并初始化进程... // ... // 循环调度 for (;;) { scheduler(processes, sizeof(processes)/sizeof(processes[0]), 1); // 时间片为1秒 } return 0; } ``` 在这个例子中,你需要添加更多的细节,例如维护一个就绪队列,处理进程间通信,以及更复杂的调度策略。此外,这个例子假设了每个进程的运行时间小于给定的时间片,实际应用中还需要考虑进程阻塞、唤醒等场景。
阅读全文

相关推荐

c语言实现完成单处理器系统中的进程调度,要求实现时间片轮转、优先数、最短进程优 先和最短剩余时间优先四种调度算法。实验具体包括:首先确定进程控制块的内容,进程控 制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所作工作进行 测试。 模拟程序只对你所设置的“虚拟 PCB”进行相应的调度模拟操作,即每发生“调度” 时,显示出当前运行进程的“进程标识符”、“优先数”、“剩余运行时间”等,而不需要对系 统中真正的 PCB 等数据进行修改。要求能够动态地随机生成新进程添加到就绪队列中。主要考虑三个问题:如何组织进程、如何创建进程和如何实现处理器调度。首先要设定进程控制块的内容。进程控制块 PCB 记录各个进程执 行时的情况。每个进程都要有一个唯一的标识符,用来标识进程的存在和区别于其他进程。可以用符号或编号实现,它必须是操作系统分配的。记录进程的基本情况,例如进程的状态、等待原因、进程程序存放位置、进程数据存放位置等等。实验中,因为进程没有数据和程序,仅使用模拟的进程控制块,所以这部分 内容仅包含进程状态。进程状态可假设只有就绪、运行、终止三种。现场信息记录各个寄存器的内容。管理信息记录进程管理和调度的信息。例如进程优先数、进程队列指针等

帮我用C语言编写具体代码:完成单处理器系统中的进程调度,要求实现时间片轮转、优先数、最短进程优先和最短剩余时间优先四种调度算法。要求能够动态地随机生成5个新进程添加到就绪队列中。模拟程序只对你所设置的“虚拟 PCB”进行相应的调度模拟操作,即每发生“调度”时,显示出当前运行进程的“进程标识符”、“优先数”、“剩余运行时间”等。 主要考虑三个问题:如何组织进程、如何创建进程和如何实现处理器调度。 1、组织进程 考虑如何组织进程,首先要设定进程控制块的内容。进程控制块 PCB 记录各个进程执行时的情况。不同的操作系统,进程控制块记录的信息内容不一样。操作系统功能越强,软 件也越庞大,进程控制块的内容也就越多。这里只使用必不可少的信息。一般操作系统中,无论进程控制块中信息量多少,信息都可以大致分为以下四类:标识信息、说明信息、现场信息、管理信息。可将进程控制块结构定义如下: struct pcb { int name; //进程标识符 int status; //进程状态 int pri; //进程优先数 int time; //剩余运行时间,以时间片为单位,当减至 0 时该进程终止 int next; //下一个进程控制块的位置 } 实验中应该用数组模拟这个 专门的进程控制块区域,定义如下: #define n 10 //假定系统允许进程个数为 n struct pcb pcbarea[n]; //模拟进程控制块区域的数组 实验中指向运行进程的进程控制块指针、就绪队列指针和空闲进程控制块队列指针定义如下: int run; //定义指向正在运行进程的进程控制块的指针 struct { int head; int tail; //定义指向就绪队列的头指针 head 和尾指针 tail }ready; int pfree; //定义指向空闲进程控制块队列的指针

最新推荐

recommend-type

进程调度、银行家算法、页式地址重定位模拟,LRU算法模拟和先来先服务算法代码

进程控制块(PCB)是操作系统中用来描述进程的数据结构,它记录了进程的所有信息,包括进程名、优先数、到达时间、需要运行时间、已用 CPU 时间、进程状态等。 4. 进程调度算法 本文将介绍两种常见的进程调度算法...
recommend-type

操作系统进程控制实验代码(c语言)

它存储了关于进程的各种信息,如进程名、进程优先级、轮转时间片、CPU使用时间、进程状态和当前队列指针等。PCB使得操作系统能够管理和调度进程。 3. **进程状态**:进程在生命周期中可能处于就绪、运行、阻塞三种...
recommend-type

rime输入法-下载 RIME/中州韻輸入法引擎,是一個跨平臺的輸入法算法框架 基於這一框架,Rime 開發者與其他開源社區的參與者在 Windows、macOS、Linux、Android 等平

rime输入法-下载 RIME/中州韻輸入法引擎,是一個跨平臺的輸入法算法框架。 基於這一框架,Rime 開發者與其他開源社區的參與者在 Windows、macOS、Linux、Android 等平臺上創造了不同的輸入法前端實現。
recommend-type

深度学习项目-街景字符识别.zip

深度学习项目-街景字符识别.zip资源是一个基于深度学习技术的开源项目,旨在实现对街景图像中文字的自动识别。该项目利用卷积神经网络(CNN)和序列模型如循环神经网络(RNN),能够处理复杂的街道环境下的字符识别任务,对于智能驾驶、地图自动化标注等场景具有重要价值。项目代码经过测试运行成功,功能正常,适合计算机相关专业学生、教师或企业员工下载学习,也可作为大作业、课程设计、毕设项目等使用。本资源是学习资源,不包含安装步骤,但提供了详细的配置文件以指引模型训练和评估过程。
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依