帮我把完整的代码写出来
时间: 2023-08-28 14:39:39 浏览: 95
好的,以下是完整的代码:
```
Private Sub CommandButton1_Click()
Dim Today As Date
Dim ColNum As Integer
Dim MergeRange As Range
'获取今日日期所在的列号
Today = Date
ColNum = Application.Match(Today, Range("7:7"), 0)
'合并第三行和第371行的单元格并设置为居中对齐
Range("C3:" & Cells(3, ColNum).Address).Merge
Range("C371:" & Cells(371, ColNum).Address).Merge
Range("C3:" & Cells(3, ColNum).Address).HorizontalAlignment = xlCenter
Range("C371:" & Cells(371, ColNum).Address).HorizontalAlignment = xlCenter
'提示格式已调整
MsgBox "格式已调整!"
End Sub
```
这段代码与之前的代码相比,省略了循环搜索和计算需要合并的单元格范围的步骤,直接使用Range函数指定了需要合并的单元格范围。另外,删除了EndCell和EndCell1变量的定义,因为在这个代码中并没有使用到这两个变量。
相关问题
帮我把完整代码写出来
当然可以,这是一个简单的C语言版本,假设链表节点结构如下:
```c
typedef struct ListNode {
int val;
struct ListNode *next;
} ListNode;
// 添加节点到结果链表函数
void addNodeToResult(ListNode* list, ListNode** result) {
ListNode* newNode = malloc(sizeof(ListNode));
newNode->val = list->val;
newNode->next = NULL;
if (*result == NULL) {
*result = newNode;
} else {
ListNode* last = *result;
while (last->next != NULL) {
last = last->next;
}
last->next = newNode;
}
}
// 寻找交集链表函数
ListNode* findIntersection(ListNode* A, ListNode* B) {
ListNode* pA = A, *pB = B, *result = NULL;
// 移动指针直到找到交叉点或一个链表结束
while (pA && pB) {
if (pA->val == pB->val) {
addNodeToResult(pA, &result);
pA = pA->next;
pB = pB->next;
} else if (pA->val < pB->val) {
pA = pA->next;
} else {
pB = pB->next;
}
}
return result;
}
```
这段代码首先定义了链表节点结构`ListNode`,然后实现了添加节点到结果链表以及寻找交集链表的功能。`findIntersection`函数最终会返回交集链表的头结点,如果没有交集则返回NULL。
请帮我把完整代码写出来并整合在一起
为了完成这个实验,我们需要编写完整的代码来加载数据、预处理数据、构建和评估不同的分类器及其集成方法。以下是基于 `scikit-learn` 库的完整代码示例:
### 导入必要的库
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
```
### 加载和预处理 Glass 数据集
```python
# 加载数据
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/glass/glass.data"
column_names = ["Id", "RI", "Na", "Mg", "Al", "Si", "K", "Ca", "Ba", "Fe", "Type"]
data = pd.read_csv(url, names=column_names)
# 分离特征和标签
X = data.drop(columns=["Id", "Type"])
y = data["Type"]
# 将多分类问题转换为二分类问题
y_binary = (y != 1).astype(int) # 假设类别1为一类,其他为另一类
# 划分训练集和测试集
X_train, X_test, y_train_binary, y_test_binary = train_test_split(X, y_binary, test_size=0.3, random_state=42)
X_train, X_test, y_train_multi, y_test_multi = train_test_split(X, y, test_size=0.3, random_state=42)
# 标准化特征
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
### 定义基分类器
```python
classifiers = {
"Logistic Regression": LogisticRegression(max_iter=1000),
"Decision Tree": DecisionTreeClassifier(),
"SVM": SVC(probability=True),
"KNN": KNeighborsClassifier(),
"Naive Bayes": GaussianNB()
}
```
### 训练和评估基分类器
```python
def evaluate_classifiers(classifiers, X_train, y_train, X_test, y_test):
results = {}
for name, clf in classifiers.items():
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
results[name] = accuracy
print(f"{name} Accuracy: {accuracy:.4f}")
return results
binary_results = evaluate_classifiers(classifiers, X_train_scaled, y_train_binary, X_test_scaled, y_test_binary)
multi_results = evaluate_classifiers(classifiers, X_train_scaled, y_train_multi, X_test_scaled, y_test_multi)
```
### 构建集成分类器
```python
# Hard Voting Classifier
hard_voting_clf = VotingClassifier(estimators=list(classifiers.items()), voting='hard')
hard_voting_clf.fit(X_train_scaled, y_train_multi)
y_pred_hard = hard_voting_clf.predict(X_test_scaled)
accuracy_hard = accuracy_score(y_test_multi, y_pred_hard)
print(f"Hard Voting Classifier Accuracy: {accuracy_hard:.4f}")
# Soft Voting Classifier
soft_voting_clf = VotingClassifier(estimators=list(classifiers.items()), voting='soft', weights=[1, 1, 1, 1, 1])
soft_voting_clf.fit(X_train_scaled, y_train_multi)
y_pred_soft = soft_voting_clf.predict(X_test_scaled)
accuracy_soft = accuracy_score(y_test_multi, y_pred_soft)
print(f"Soft Voting Classifier Accuracy: {accuracy_soft:.4f}")
# Weighted Soft Voting Classifier
weights = [cross_val_score(clf, X_train_scaled, y_train_multi, cv=5).mean() for clf in classifiers.values()]
weighted_soft_voting_clf = VotingClassifier(estimators=list(classifiers.items()), voting='soft', weights=weights)
weighted_soft_voting_clf.fit(X_train_scaled, y_train_multi)
y_pred_weighted_soft = weighted_soft_voting_clf.predict(X_test_scaled)
accuracy_weighted_soft = accuracy_score(y_test_multi, y_pred_weighted_soft)
print(f"Weighted Soft Voting Classifier Accuracy: {accuracy_weighted_soft:.4f}")
```
### 加载和预处理 Leukemia 数据集
```python
# 加载数据
url_leukemia = "path_to_leukemia_data.csv" # 替换为实际路径
leukemia_data = pd.read_csv(url_leukemia)
# 分离特征和标签
X_leukemia = leukemia_data.iloc[:, 1:].values
y_leukemia = leukemia_data.iloc[:, 0].values
# 划分训练集和测试集
X_train_leukemia, X_test_leukemia, y_train_leukemia, y_test_leukemia = train_test_split(X_leukemia, y_leukemia, test_size=0.3, random_state=42)
# 标准化特征
scaler_leukemia = StandardScaler()
X_train_leukemia_scaled = scaler_leukemia.fit_transform(X_train_leukemia)
X_test_leukemia_scaled = scaler_leukemia.transform(X_test_leukemia)
```
### 训练和评估 Leukemia 数据集上的分类器
```python
leukemia_results = evaluate_classifiers(classifiers, X_train_leukemia_scaled, y_train_leukemia, X_test_leukemia_scaled, y_test_leukemia)
# Hard Voting Classifier
hard_voting_clf_leukemia = VotingClassifier(estimators=list(classifiers.items()), voting='hard')
hard_voting_clf_leukemia.fit(X_train_leukemia_scaled, y_train_leukemia)
y_pred_hard_leukemia = hard_voting_clf_leukemia.predict(X_test_leukemia_scaled)
accuracy_hard_leukemia = accuracy_score(y_test_leukemia, y_pred_hard_leukemia)
print(f"Hard Voting Classifier on Leukemia Data Accuracy: {accuracy_hard_leukemia:.4f}")
# Soft Voting Classifier
soft_voting_clf_leukemia = VotingClassifier(estimators=list(classifiers.items()), voting='soft', weights=[1, 1, 1, 1, 1])
soft_voting_clf_leukemia.fit(X_train_leukemia_scaled, y_train_leukemia)
y_pred_soft_leukemia = soft_voting_clf_leukemia.predict(X_test_leukemia_scaled)
accuracy_soft_leukemia = accuracy_score(y_test_leukemia, y_pred_soft_leukemia)
print(f"Soft Voting Classifier on Leukemia Data Accuracy: {accuracy_soft_leukemia:.4f}")
# Weighted Soft Voting Classifier
weights_leukemia = [cross_val_score(clf, X_train_leukemia_scaled, y_train_leukemia, cv=5).mean() for clf in classifiers.values()]
weighted_soft_voting_clf_leukemia = VotingClassifier(estimators=list(classifiers.items()), voting='soft', weights=weights_leukemia)
weighted_soft_voting_clf_leukemia.fit(X_train_leukemia_scaled, y_train_leukemia)
y_pred_weighted_soft_leukemia = weighted_soft_voting_clf_leukemia.predict(X_test_leukemia_scaled)
accuracy_weighted_soft_leukemia = accuracy_score(y_test_leukemia, y_pred_weighted_soft_leukemia)
print(f"Weighted Soft Voting Classifier on Leukemia Data Accuracy: {accuracy_weighted_soft_leukemia:.4f}")
```
### 总结和分析
```python
print("Summary of Results:")
print("Glass Data - Binary Classification")
for name, accuracy in binary_results.items():
print(f"{name}: {accuracy:.4f}")
print("\nGlass Data - Multi-Class Classification")
for name, accuracy in multi_results.items():
print(f"{name}: {accuracy:.4f}")
print("\nGlass Data - Ensemble Methods")
print(f"Hard Voting Classifier: {accuracy_hard:.4f}")
print(f"Soft Voting Classifier: {accuracy_soft:.4f}")
print(f"Weighted Soft Voting Classifier: {accuracy_weighted_soft:.4f}")
print("\nLeukemia Data - Multi-Class Classification")
for name, accuracy in leukemia_results.items():
print(f"{name}: {accuracy:.4f}")
print("\nLeukemia Data - Ensemble Methods")
print(f"Hard Voting Classifier: {accuracy_hard_leukemia:.4f}")
print(f"Soft Voting Classifier: {accuracy_soft_leukemia:.4f}")
print(f"Weighted Soft Voting Classifier: {accuracy_weighted_soft_leukemia:.4f}")
```
以上代码涵盖了从数据加载、预处理到模型训练和评估的完整流程。你可以根据具体需求调整参数和数据路径。希望这对你有帮助!
阅读全文