注释以下代码 def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): train_l_sum, valid_l_sum = 0.0, 0.0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) train_ls, valid_ls = train(model, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] print("fold %d, train rmse: %.4f, valid rmse: %.4f" % (i, train_ls[-1], valid_ls[-1])) return train_l_sum / k, valid_l_sum / k
时间: 2024-01-27 09:02:54 浏览: 105
confusion.rar_K._confusion_confusion matrix_k fold_k_fold
这段代码实现了一个 k 折交叉验证的训练过程,其输入包括:k 表示折数,X_train 表示训练数据集的特征,y_train 表示训练数据集的标签,num_epochs 表示训练模型的轮数,learning_rate 表示学习率,weight_decay 表示权重衰减参数,batch_size 表示每个小批量的样本数。其输出包括:训练数据集的平均 RMSE 和验证数据集的平均 RMSE。
具体实现过程为:首先,通过 get_k_fold_data 函数将训练数据集分为 k 折,取其中一折作为验证数据集,其余折作为训练数据集。然后,将分好的数据集传入 train 函数进行模型训练,得到训练数据集和验证数据集的 RMSE,累加每一折的 RMSE,并输出当前折数、训练数据集 RMSE 和验证数据集 RMSE。最后,返回训练数据集的平均 RMSE 和验证数据集的平均 RMSE。
阅读全文