注释以下代码 def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): train_l_sum, valid_l_sum = 0.0, 0.0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) train_ls, valid_ls = train(model, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] print("fold %d, train rmse: %.4f, valid rmse: %.4f" % (i, train_ls[-1], valid_ls[-1])) return train_l_sum / k, valid_l_sum / k

时间: 2024-01-27 16:02:54 浏览: 25
这段代码实现了一个 k 折交叉验证的训练过程,其输入包括:k 表示折数,X_train 表示训练数据集的特征,y_train 表示训练数据集的标签,num_epochs 表示训练模型的轮数,learning_rate 表示学习率,weight_decay 表示权重衰减参数,batch_size 表示每个小批量的样本数。其输出包括:训练数据集的平均 RMSE 和验证数据集的平均 RMSE。 具体实现过程为:首先,通过 get_k_fold_data 函数将训练数据集分为 k 折,取其中一折作为验证数据集,其余折作为训练数据集。然后,将分好的数据集传入 train 函数进行模型训练,得到训练数据集和验证数据集的 RMSE,累加每一折的 RMSE,并输出当前折数、训练数据集 RMSE 和验证数据集 RMSE。最后,返回训练数据集的平均 RMSE 和验证数据集的平均 RMSE。
相关问题

train_test_split和k_fold

train_test_split和k_fold都是用于数据集划分的方法,但在实现上有一些不同。 train_test_split是交叉验证中常用的函数,它可以从样本中随机地按比例选取训练集和测试集。在使用sklearn库中的train_test_split函数时,我们可以指定要划分的数据集、训练集和测试集的比例以及随机种子。例如,可以使用以下代码将数据集划分为训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(train_data, train_target, test_size=0.2, random_state=0) ``` k-fold是一种交叉验证技术,它将数据集划分为k个子集,其中k-1个子集用于训练模型,剩余的一个子集用于测试模型。这个过程会重复k次,每次使用不同的子集作为测试集。k-fold交叉验证可以更准确地评估模型的性能,因为它使用了整个数据集的多个子集进行训练和测试。例如,可以使用以下代码将数据集划分为k个子集,并进行k-fold交叉验证: ```python from sklearn.model_selection import KFold k_fold = KFold(n_splits=5) for train_index, test_index in k_fold.split(data): X_train, X_test = data[train_index], data[test_index] y_train, y_test = target[train_index], target[test_index] # 在这里使用LVQ算法进行训练和测试 ``` 综上所述,train_test_split和k_fold都是用于数据集划分的方法,但train_test_split是按比例随机选取训练集和测试集,而k-fold是将数据集划分为k个子集进行交叉验证。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [数据集划分train_test_split\交叉验证Cross-validation](https://blog.csdn.net/u010986753/article/details/98069124)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [手搓函数,实现train_test_split一样的数据集划分](https://blog.csdn.net/ouyang_xiaogan/article/details/123279970)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [lvq.rar_5-fold_The Fold_k fold_k fold cross_lvq](https://download.csdn.net/download/weixin_42665255/86613035)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

分析这段代码get_k_fold_data(k, i, X, y):

这段代码的作用是将数据集 X 和标签 y 分成 k 份,其中第 i 份作为验证集,其余 k-1 份作为训练集,并返回这些数据集。 具体分析如下: 1. 首先计算每一份数据集的大小,即 n = len(X) // k,表示每份数据集中样本的数量。这里使用地板除法是为了避免有余数时出现不整除的情况。 2. 然后计算验证集的起始和结束索引,即 start = i * n,end = min((i+1)*n, len(X))。start 表示验证集在 X 中的起始索引,end 表示验证集在 X 中的结束索引。因为最后一份数据集可能不足 n 个样本,所以要取 min((i+1)*n, len(X))。 3. 接下来创建训练集和验证集的索引列表 train_indices 和 val_indices。其中训练集的索引列表包括除验证集外的所有索引,验证集的索引列表为验证集的起始和结束索引之间的所有索引。 4. 最后根据训练集和验证集的索引列表,从 X 和 y 中取出对应的训练集和验证集,并返回它们。

相关推荐

将这段代码改为输出的AUC、f1_score、Accuracy是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.001 dropout_rate = 0.1 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

修改代码,使得输出结果是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.01 dropout_rate = 0.7 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

修改这段代码,使得输出训练集结果是可重复的:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.001 dropout_rate = 0.1 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 #early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size,verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1) #测试集结果 test_pred = model.predict(X_test) test_auc = roc_auc_score(y_test_forced_turnover_nolimited, test_pred) test_f1_score = f1_score(y_test_forced_turnover_nolimited, np.round(test_pred)) test_accuracy = accuracy_score(y_test_forced_turnover_nolimited, np.round(test_pred)) print('Test AUC:', test_auc) print('Test F1 Score:', test_f1_score) print('Test Accuracy:', test_accuracy) #训练集结果 train_pred = model.predict(X_train) train_auc = roc_auc_score(y_train_forced_turnover_nolimited, train_pred) train_f1_score = f1_score(y_train_forced_turnover_nolimited, np.round(train_pred)) train_accuracy = accuracy_score(y_train_forced_turnover_nolimited, np.round(train_pred)) print('Train AUC:', train_auc) print('Train F1 Score:', train_f1_score) print('Train Accuracy:', train_accuracy)

在以下这段代码后面继续添加输出测试集、训练集AUC、f1_score、准确率的代码:# 定义模型参数 input_dim = X_train.shape[1] epochs = 100 batch_size = 32 learning_rate = 0.1 dropout_rate = 0.5 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(128, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(learning_rate=learning_rate) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X_train): # 划分训练集和验证集 X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[test_index] y_train_fold, y_val_fold = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index] # 创建模型 model = create_model() # 定义早停策略 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping], verbose=1) # 预测验证集 y_pred = model.predict(X_val_fold) # 计算AUC指标 auc = roc_auc_score(y_val_fold, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X_train, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1)

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。