else: # if self.file_path == '': # messagebox.showerror(message='请选择需要划分的数据集文件') # elif self.train_size + self.test_size != 1: # messagebox.showerror(message='训练集与测试集的比例之和必须等于 1') # else: data = pd.read_csv(self.file_path) # 读取数据集解释每一句代码含义
时间: 2024-02-10 16:08:54 浏览: 60
这段 Python 代码实现了一个数据集划分的功能。代码中用到了 `messagebox` 和 `pd` 两个库。
1. `messagebox` 库:这是 Python 的一个 GUI 库,主要用于显示消息框,以便向用户显示信息。在这段代码中,如果用户没有选择数据集文件或者训练集与测试集的比例之和不等于1,就会弹出一个错误的消息框,提示用户输入的参数不符合要求。
2. `pd` 库:这是 Python 的一个数据处理库,主要用于读取、处理和分析数据。在这段代码中,如果用户输入的参数符合要求,就会使用 `pd.read_csv` 方法读取指定路径的数据集文件,并将其存储在变量 `data` 中。读取的数据集可以用于后续的模型训练和测试。
相关问题
def null_input(self): # try: self.train_size = float(self.train_size_entry.get()) self.test_size = float(self.test_size_entry.get()) # except ValueError: messagebox.showerror(message='请填写正确的训练集和测试集比例') # else: # if self.file_path == '': # messagebox.showerror(message='请选择需要划分的数据集文件') # elif self.train_size + self.test_size != 1: # messagebox.showerror(message='训练集与测试集的比例之和必须等于 1') # else: data = pd.read_csv(self.file_path) # 读取数据集解释每一句代码含义
这也是一段 Python 代码,主要实现了一个数据集划分功能。
1. `def null_input(self):` 这行代码定义了一个名为 `null_input` 的函数,同样是在一个类中定义的。
2. `try:` 这行代码开始一个 try 块,用于捕捉可能出现的 ValueError 异常。
3. `self.train_size = float(self.train_size_entry.get())` 这行代码将 GUI 界面中用户输入的训练集比例转换成浮点数,并将结果存储在 `self.train_size` 变量中。
4. `self.test_size = float(self.test_size_entry.get())` 这行代码将 GUI 界面中用户输入的测试集比例转换成浮点数,并将结果存储在 `self.test_size` 变量中。
5. `except ValueError: messagebox.showerror(message='请填写正确的训练集和测试集比例')` 这行代码在 try 块中,用于捕捉可能出现的 ValueError 异常,如果出现异常则显示错误信息。
6. `data = pd.read_csv(self.file_path)` 这行代码使用 pandas 库中的 `read_csv` 函数读取用户选择的 CSV 文件,并将数据存储在 `data` 变量中。
在这段代码中,用到了 Python 标准库 tkinter 中的 `messagebox` 模块,用于显示消息框。用到的 pandas 库是 Python 中用于数据处理和分析的常用库。
这个程序运行时报错了,请为我优化它
为了优化并解决您提到的程序报错问题,我们可以从以下几个方面入手:
### 1. 修复代码中的语法错误
首先,检查并修正代码中的语法错误,比如缺少分号、括号不匹配等问题。
### 2. 优化逻辑和异常处理
加强异常处理,确保每个关键步骤都有适当的错误处理和提示信息。
### 3. 简化和重构代码
简化一些冗余的代码,提高代码的可读性和维护性。
### 4. 添加注释和文档字符串
增加注释和文档字符串,帮助理解代码的功能和流程。
以下是优化后的代码:
```python
import cv2
import numpy as np
import os
import tkinter as tk
from tkinter import filedialog, messagebox, simpledialog
from PIL import Image, ImageTk
import xlsxwriter
import traceback
import json
class AggregateAnalyzer:
def __init__(self, root):
self.root = root
self.root.title("沥青混合料颗粒分析器")
self.image_path = ""
self.image = None
self.processed_image = None
self.contours = []
self.selected_contours = []
self.show_binary = False
self.id = None
self.min_contour_area = 50
self.section_type = ""
self.config = {}
self.create_widgets()
def create_widgets(self):
self.load_button = tk.Button(self.root, text="加载图像", command=self.load_image)
self.load_button.pack(pady=5)
self.analyze_button = tk.Button(self.root, text="分析图像", command=self.analyze_image, state="disabled")
self.analyze_button.pack(pady=5)
self.save_button = tk.Button(self.root, text="保存结果", command=self.save_results, state="disabled")
self.save_button.pack(pady=5)
self.status_label = tk.Label(self.root, text="准备就绪")
self.status_label.pack(pady=5)
self.file_path_label = tk.Label(self.root, text="未选择文件")
self.file_path_label.pack(pady=5)
self.binary_button = tk.Button(self.root, text="显示二值图像", command=self.toggle_binary)
self.binary_button.pack(pady=5)
self.min_area_entry = tk.Entry(self.root)
self.min_area_entry.insert(0, str(self.min_contour_area))
self.min_area_entry.pack(pady=5)
self.min_area_label = tk.Label(self.root, text="最小粒径大小(像素)")
self.min_area_label.pack(pady=5)
self.section_type_var = tk.StringVar()
self.section_type_var.set("选择截面类型")
self.section_type_menu = tk.OptionMenu(self.root, self.section_type_var, "圆形", "矩形", "不规则")
self.section_type_menu.pack(pady=5)
self.canvas = tk.Canvas(self.root, bg='white')
self.canvas.pack(pady=10)
self.canvas.bind("<Button-1>", self.on_canvas_click)
self.canvas.bind("<MouseWheel>", self.on_mousewheel)
self.canvas.bind("<Shift-MouseWheel>", self.on_shift_mousewheel)
def load_configuration(self):
config_path = 'config.txt'
if os.path.exists(config_path):
try:
with open(config_path, 'r') as f:
self.config = json.load(f)
self.min_contour_area = self.config.get('min_contour_area', 50)
except json.JSONDecodeError as e:
self.min_contour_area = 50
self.config = {}
self.show_error(f"加载配置文件失败:{str(e)}")
else:
self.min_contour_area = 50
self.config = {'min_contour_area': self.min_contour_area}
self.show_error("配置文件不存在,已创建并使用默认设置。")
with open(config_path, 'w') as f:
json.dump(self.config, f, indent=4)
def reset_status(self):
self.selected_contours = []
self.contours = []
self.image = None
self.processed_image = None
self.show_binary = False
self.status_label.config(text="准备就绪")
self.file_path_label.config(text="未选择文件")
self.analyze_button.config(state="disabled")
self.save_button.config(state="disabled")
def load_image(self):
self.id = tk.simpledialog.askstring("输入", "请输入图片ID:")
if not self.id:
self.status_label.config(text="未输入图片ID。")
return
self.image_path = os.path.join("./imgs", self.id + ".jpg")
if not os.path.exists(self.image_path):
self.show_error("文件不存在,请检查文件路径。")
return
try:
self.image = cv2.imread(self.image_path)
if self.image is None:
self.show_error("无法读取图像。文件可能已损坏或格式不支持。")
return
self.update_display_image(self.image)
self.analyze_button.config(state="normal")
self.status_label.config(text="图像已加载")
except Exception as e:
self.show_error(f"发生错误:{str(e)}\n错误详情:{traceback.format_exc()}")
def update_display_image(self, image):
self.canvas.delete("all")
if self.show_binary:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
photo = self.scale_and_convert(binary_image)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
photo = self.scale_and_convert(image)
self.canvas.create_image(0, 0, image=photo, anchor="nw")
self.photo = photo
self.canvas.config(scrollregion=self.canvas.bbox("all"))
self.canvas.config(width=photo.width(), height=photo.height())
def show_error(self, message):
messagebox.showerror("错误", message)
with open("error_log.txt", "a") as log_file:
log_file.write(f"{message}\n")
def scale_and_convert(self, image):
try:
height, width = image.shape[:2]
max_dim = max(height, width)
canvas_width = self.canvas.winfo_reqwidth() if self.canvas.winfo_exists() else width
scale_factor = min(1, canvas_width / max_dim)
new_size = (int(width * scale_factor), int(height * scale_factor))
image = cv2.resize(image, new_size, interpolation=cv2.INTER_LANCZOS4)
image = Image.fromarray(image)
return ImageTk.PhotoImage(image)
except Exception as e:
self.show_error(f"在缩放和转换图像时发生错误:{str(e)}")
return None
def preprocess_image(self, image):
if image is None:
raise ValueError("输入图像为空")
if len(image.shape) != 3 or image.shape[2] != 3:
if len(image.shape) == 2:
gray_img = image
else:
raise ValueError("输入图像必须是三通道的或灰度图")
else:
gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if gray_img is None:
raise ValueError("灰度转换失败")
gray_img = cv2.equalizeHist(gray_img)
median_img = cv2.medianBlur(gray_img, ksize=5)
_, binary_img = cv2.threshold(median_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
if binary_img is None:
raise ValueError("阈值化失败")
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
return closing
def find_material_contour(self, image):
if image is None:
raise ValueError("输入图像为空")
if len(image.shape) == 2:
gray_image = image
else:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray_img = cv2.equalizeHist(gray_image)
gray_img = cv2.convertScaleAbs(gray_img, alpha=2, beta=0.8)
height, width = gray_img.shape[:2]
horizontal_half = int(height * 0.5)
vertical_half = int(width * 0.53)
mask1 = np.zeros_like(gray_img, dtype=np.uint8)
mask1[:horizontal_half, :vertical_half] = 255
mask2 = np.zeros_like(gray_img, dtype=np.uint8)
mask2[:horizontal_half, vertical_half:] = 255
mask3 = np.zeros_like(gray_img, dtype=np.uint8)
mask3[horizontal_half:, :vertical_half] = 255
mask4 = np.zeros_like(gray_img, dtype=np.uint8)
mask4[horizontal_half:, vertical_half:] = 255
_, binary_img1 = cv2.threshold(cv2.bitwise_and(gray_img, mask1), 140, 255, cv2.THRESH_BINARY)
_, binary_img2 = cv2.threshold(cv2.bitwise_and(gray_img, mask2), 115, 255, cv2.THRESH_BINARY)
_, binary_img3 = cv2.threshold(cv2.bitwise_and(gray_img, mask3), 125, 255, cv2.THRESH_BINARY)
_, binary_img4 = cv2.threshold(cv2.bitwise_and(gray_img, mask4), 110, 255, cv2.THRESH_BINARY)
target_binary_img = binary_img1 + binary_img2 + binary_img3 + binary_img4
contours, _ = cv2.findContours(target_binary_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
material_contour = max(contours, key=cv2.contourArea) if contours else None
if material_contour is None or cv2.contourArea(material_contour) < self.min_contour_area:
raise ValueError("未检测到符合条件的材料轮廓")
return material_contour
def find_grain_contours(self, image, material_contour):
if image is None or material_contour is None:
raise ValueError("输入图像或材料轮廓为空")
gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray_img = cv2.equalizeHist(gray_img)
gray_img = cv2.convertScaleAbs(gray_img, alpha=2, beta=0.8)
height, width = gray_img.shape[:2]
horizontal_half = int(height * 0.5)
vertical_half = int(width * 0.53)
mask1 = np.zeros_like(gray_img, dtype=np.uint8)
mask1[:horizontal_half, :vertical_half] = 255
mask2 = np.zeros_like(gray_img, dtype=np.uint8)
mask2[:horizontal_half, vertical_half:] = 255
mask3 = np.zeros_like(gray_img, dtype=np.uint8)
mask3[horizontal_half:, :vertical_half] = 255
mask4 = np.zeros_like(gray_img, dtype=np.uint8)
mask4[horizontal_half:, vertical_half:] = 255
_, binary_img1 = cv2.threshold(cv2.bitwise_and(gray_img, mask1), 140, 255, cv2.THRESH_BINARY)
_, binary_img2 = cv2.threshold(cv2.bitwise_and(gray_img, mask2), 115, 255, cv2.THRESH_BINARY)
_, binary_img3 = cv2.threshold(cv2.bitwise_and(gray_img, mask3), 125, 255, cv2.THRESH_BINARY)
_, binary_img4 = cv2.threshold(cv2.bitwise_and(gray_img, mask4), 110, 255, cv2.THRESH_BINARY)
target_binary_img = binary_img1 + binary_img2 + binary_img3 + binary_img4
_, binary_img = cv2.threshold(gray_img, 115, 180, cv2.THRESH_BINARY)
all_contours, _ = cv2.findContours(np.uint8(binary_img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
target_contours, _ = cv2.findContours(np.uint8(target_binary_img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
min_contour_area = 250
filtered_contours = [contour for contour in target_contours if cv2.contourArea(contour) > min_contour_area]
return filtered_contours
def process_image(self):
if self.image is None:
self.show_error("未加载图像。")
return None, None
try:
self.status_label.config(text="正在预处理图像...")
processed_image = self.preprocess_image(self.image)
if processed_image is None:
self.show_error("图像预处理失败。")
return None, None
self.status_label.config(text="正在识别材料轮廓...")
material_contour = self.find_material_contour(processed_image)
if material_contour is None:
self.show_error("未检测到材料轮廓。")
return None, None
self.status_label.config(text="正在识别颗粒轮廓...")
grain_contours = self.find_grain_contours(self.image, material_contour)
if not grain_contours:
self.show_error("未检测到颗粒轮廓。")
return None, None
self.status_label.config(text="正在绘制轮廓...")
output_image = processed_image.copy()
cv2.drawContours(output_image, [material_contour], -1, (0, 0, 255), 2)
cv2.drawContours(output_image, grain_contours, -1, (0, 255, 0), 2)
self.update_display_image(output_image)
self.status_label.config(text="轮廓已检测")
return output_image, grain_contours
except Exception as e:
self.show_error(f"处理图像时发生错误:{str(e)}\n错误详情:{traceback.format_exc()}")
return None, None
def analyze_image(self):
if self.image is None:
self.show_error("未加载图像。")
return
try:
self.status_label.config(text="正在分析图像...")
self.min_contour_area = int(self.min_area_entry.get())
output_image, grain_contours = self.process_image()
if output_image is None or not grain_contours:
return
self.save_button.config(state="normal")
self.status_label.config(text="分析完成,结果已准备保存。")
except Exception as e:
self.show_error(f"分析图像时发生错误:{str(e)}\n错误详情:{traceback.format_exc()}")
def save_results(self):
if not self.selected_contours or not self.image:
self.show_error("没有选择任何轮廓或未加载图像。")
return
try:
file_path = filedialog.asksaveasfilename(defaultextension=".xlsx", filetypes=[("Excel files", "*.xlsx")], title="保存Excel文件")
if not file
阅读全文