层次聚类python代码
时间: 2023-07-22 16:30:47 浏览: 53
下面是一个使用scikit-learn库进行层次聚类的Python代码示例:
```python
from sklearn.cluster import AgglomerativeClustering
import numpy as np
# 创建样本数据
X = np.array([[5, 3],
[10, 15],
[15, 12],
[24, 10],
[30, 30],
[85, 70],
[71, 80],
[60, 78],
[70, 55],
[80, 91],])
# 进行层次聚类
clustering = AgglomerativeClustering(n_clusters=2).fit(X)
# 打印每个样本所属的簇
print(clustering.labels_)
```
上面的代码创建了一个包含10个样本的数据集,并使用`AgglomerativeClustering`类进行层次聚类。聚类的数量被设置为2个,因此最终生成2个簇。聚类结果存储在`clustering.labels_`中,打印输出即可看到每个样本所属的簇。
相关问题
层次聚类 python代码
层次聚类是一种基于树形结构的聚类算法,它通过计算样本之间的相似度来构建一棵树形结构,树的叶子节点就是样本,而树的根节点则是所有样本的最近公共祖先。层次聚类分为两种:自上而下的聚合式层次聚类和自下而上的分裂式层次聚类。
下面是一个使用 Python 实现层次聚类的简单示例代码:
```python
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage
import matplotlib.pyplot as plt
# 生成随机数据
X = np.random.rand(10, 2)
# 计算相似度矩阵
Z = linkage(X, 'ward')
# 绘制树状图
fig = plt.figure(figsize=(25, 10))
dn = dendrogram(Z)
plt.show()
```
在这个示例中,我们使用 numpy 库生成了一个包含 10 个样本,每个样本有两个特征的随机数据集。然后使用 scipy 库中的 linkage 函数计算相似度矩阵,并选择使用 Ward 方法进行层次聚类。最后使用 matplotlib 库绘制树状图。
层次聚类python
层次聚类是一种用于将数据集划分为不同的群组的聚类算法。在Python中,可以使用scipy库中的scipy.cluster.hierarchy模块来进行层次聚类。首先,需要导入所需的类和函数,如下所示:
```python
import scipy.cluster.hierarchy as sch
import numpy as np
```
接下来,可以使用pdist函数计算数据点之间的距离矩阵,例如使用欧氏距离:
```python
disMat = sch.distance.pdist(points, 'euclidean')
```
然后,可以使用linkage函数进行层次聚类:
```python
Z = sch.linkage(disMat, method='average')
```
聚类结果可以通过dendrogram函数绘制成树状图:
```python
P = sch.dendrogram(Z)
```
如果需要保存树状图,可以使用savefig函数:
```python
plt.savefig('plot_dendrogram.png')
```
最后,可以使用fcluster函数根据给定的阈值将数据点分配到不同的聚类中:
```python
cluster = sch.fcluster(Z, t=1, criterion='inconsistent')
```
这样就可以得到层次聚类的结果。另外,如果想要使用k-means聚类算法,可以使用scipy.cluster.vq模块中的kmeans和vq函数。具体的代码和使用方法可以参考上述引用\[2\]中的代码示例。如果需要更详细的信息,可以参考scipy官方文档中关于scipy.cluster.hierarchy和scipy.cluster.vq模块的描述,具体参考引用\[3\]中的官方描述链接。
#### 引用[.reference_title]
- *1* *2* *3* [运用python进行层次聚类](https://blog.csdn.net/qq_40527086/article/details/83218513)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文