基于邻接矩阵实现图的广度优先遍历(数据结构

时间: 2024-03-18 09:17:56 浏览: 14
邻接矩阵是一种表示图的方式,它用二维数组来表示节点之间的连接关系。具体来说,如果图中有 $n$ 个节点,那么邻接矩阵就是一个 $n \times n$ 的矩阵,其中第 $i$ 行第 $j$ 列的元素表示从节点 $i$ 到节点 $j$ 是否有边相连。 广度优先遍历是一种图的遍历方式,它从图中的某个节点开始,依次访问与该节点相邻的所有节点,然后再依次访问这些相邻节点的相邻节点,直到遍历完整个图。 下面是基于邻接矩阵实现图的广度优先遍历的代码: ```python from queue import Queue def bfs(adj_matrix, start): n = len(adj_matrix) visited = [False] * n queue = Queue() visited[start] = True queue.put(start) while not queue.empty(): node = queue.get() print(node, end=' ') for i in range(n): if adj_matrix[node][i] and not visited[i]: visited[i] = True queue.put(i) ``` 其中,`adj_matrix` 是邻接矩阵,`start` 是起始节点的编号。首先创建一个长度为 $n$ 的布尔数组 `visited` 表示每个节点是否被访问过,初始时所有节点都未被访问过。然后创建一个队列 `queue`,将起始节点放入队列中,并将 `visited[start]` 设为 `True`。接下来进入循环,每次从队列中取出一个节点 `node`,访问它,并将与它相邻的未被访问过的节点放入队列中。具体来说,对于每个节点 $i$,如果从节点 $node$ 到节点 $i$ 有边相连且节点 $i$ 未被访问过,则将 `visited[i]` 设为 `True`,并将节点 $i$ 放入队列中。直到队列为空,遍历结束。 注意,上述代码中使用了 Python 中的队列类 `queue.Queue`,如果使用其他编程语言,需要自己实现队列。另外,如果图不是连通的,即存在多个连通分量,那么需要对每个连通分量都进行广度优先遍历。

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

程序设计任务: 设计一个程序,实现以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。基本要求:以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的...
recommend-type

广州大学 数据结构实验报告 实验三 图的操作与实现

1、图的邻接表和邻接矩阵存储 2、图的各种遍历算法实现 3、最小生成树的算法实现 4、最短路径的算法实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.