-221.1728571×exp(-1.75×2017)的值

时间: 2023-03-19 21:24:50 浏览: 75
首先,我们可以计算指数部分: -1.75×2017 = -3524.75 接下来,我们可以将指数部分代入指数函数中: exp(-3524.75) ≈ 2.458×10^(-1531) 最后,我们可以将指数函数的值乘以-221.1728571: -221.1728571 × 2.458×10^(-1531) ≈ -5.43×10^(-129) 因此,-221.1728571×exp(-1.75×2017)的值约为-5.43×10^(-129)。
相关问题

a的初始值为10^(-16) y = (2exp(2)0.02585/(1-exp(1/0.02585(1.1-x)))+ 1.125(x-1.1))a(x-1.1)/(810^(-9))这个是要建立的函数类型,只含有一个参数a,需要求解,下面是我的实际数据点 x = 0.1:0.1:5; y_data = [-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517]; y的实际数据点是取了对数的,而函数模型没有取对数,用c或c++用L-M法求解,L-M法需要设立误差函数,误差函数为F=0.5(f T *f) 写出c语言代码

以下是使用L-M法求解的C语言代码,其中包括了误差函数和L-M法的主要代码逻辑: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> // 定义常量 #define N 50 #define M 1 #define EPS 1e-8 #define MAX_ITERATION 1000 // 定义全局变量 double x[N] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0}; double y[N] = {-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517}; double a[M] = {1e-16}; double lambda = 0.001; double mu = 10.0; // 定义函数原型 void func(double x[], double y[], double a[], double f[]); void jacobian(double x[], double a[], double J[][M]); double error(double f[]); void LM(double x[], double y[], double a[], int n, int m); int main() { LM(x, y, a, N, M); printf("a = %lf\n", a[0]); return 0; } void func(double x[], double y[], double a[], double f[]) { double p, q; for (int i = 0; i < N; i++) { p = 2 * exp(2) * 0.02585 / (1 - exp(1 / 0.02585 * (1.1 - x[i]))) + 1.125 * (x[i] - 1.1); q = a[0] * (x[i] - 1.1) / (810e-9); f[i] = p * q; } } void jacobian(double x[], double a[], double J[][M]) { double p, q; for (int i = 0; i < N; i++) { p = 2 * exp(2) * 0.02585 / (1 - exp(1 / 0.02585 * (1.1 - x[i]))) + 1.125 * (x[i] - 1.1); q = (x[i] - 1.1) / (810e-9); J[i][0] = p * q; } } double error(double f[]) { double e = 0.0; for (int i = 0; i < N; i++) { e += pow(f[i] - y[i], 2); } return e / 2.0; } void LM(double x[], double y[], double a[], int n, int m) { double f[N], J[N][M], delta[M], e, e1, e2; int k = 0; func(x, y, a, f); e = error(f); while (k < MAX_ITERATION) { jacobian(x, a, J); for (int i = 0; i < m; i++) { double sum = 0.0; for (int j = 0; j < n; j++) { sum += J[j][i] * J[j][i]; } delta[i] = 0.0; delta[i] = (sum + lambda) * mu; } for (int i = 0; i < m; i++) { a[i] += delta[i]; } func(x, y, a, f); e1 = error(f); if (e1 < e) { lambda /= 10.0; e = e1; } else { lambda *= 10.0; for (int i = 0; i < m; i++) { a[i] -= delta[i]; } } e2 = error(f); if (fabs(e2 - e) < EPS) { break; } k++; } } ``` 其中,函数`func`用于计算函数值,函数`jacobian`用于计算雅可比矩阵,函数`error`用于计算误差,函数`LM`是L-M法的主要实现逻辑。 在`LM`函数中,首先计算初始误差`e`和初始函数值`f`,然后进入迭代过程,每次迭代分别计算雅可比矩阵和增量`delta`,根据增量更新参数`a`,然后计算新的函数值和误差,根据误差判断是否接受更新,如果接受则将阻尼因子`lambda`减小,否则将其增大,直到满足收敛条件。最终输出求解得到的参数`a`的值。 注意,由于函数中存在除数为0的情况,需要特别注意计算时的精度和取值范围。

a的初始值为10^(-16) y = log((2exp(2)0.02585/(1-exp(1/0.02585(1.1-x)))+ 1.125(x-1.1))a(x-1.1)/(810^(-9)))这个是要建立的函数类型,只含有一个参数a,需要求解,下面是我的实际数据点 x = 0.1:0.1:5; y_data = [-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517]; y的实际数据点是取了对数的,而函数模型没有取对数,用c或c++用L-M法求解,L-M法需要设立误差函数,误差函数为F=0.5(f T *f) 写出c语言代码并验证正确性和合理性

以下是使用C语言实现的L-M法求解的代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define N 50 #define M 1 double x[N] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0}; double y[N] = {-17.07912228, -17.07912228, -16.8427335, -16.6890252, -16.66282283, -16.49643209, -16.46765313, -16.40577772, -16.36655701, -16.2865143, -16.16938895, -16.05982674, -16.04577499, -15.94414234, -15.84806851, -15.7569308, -15.67984072, -15.58160228, -15.51651566, -15.40269786, -15.32736814, -15.22405053, -15.14731673, -15.08847623, -15.01449582, -14.97228176, -14.86533268, -14.79500737, -14.74691493, -14.67235383, -14.60958366, -14.56946988, -14.47909894, -14.4316967, -14.3688958, -14.31803738, -14.26179766, -14.20855315, -14.15800087, -14.0899474, -14.02007772, -13.91533089, -13.80062195, -13.66709055, -13.45783611, -13.1198665, -12.61705293, -11.96705575, -11.22774652, -10.45513517}; double a[M] = {1e-16}; double lambda = 0.001; double epsilon1 = 1e-6; double epsilon2 = 1e-6; double f(double a[], double x[], int i) { double y_pred = log((2 * exp(2) * 0.02585 / (1 - exp(1 / 0.02585 * (1.1 - x[i]))) + 1.125 * (x[i] - 1.1)) * a[0] * (x[i] - 1.1) / (8 * pow(10, -10))); return y_pred - y[i]; } double F(double a[], double x[]) { double sum = 0.0; for (int i = 0; i < N; i++) { sum += pow(f(a, x, i), 2); } return 0.5 * sum; } double J(double a[], double x[], int i, int j) { double delta = 1e-6; double a1[M], a2[M]; for (int k = 0; k < M; k++) { a1[k] = a[k]; a2[k] = a[k]; } a1[j] -= delta; a2[j] += delta; double y1 = f(a1, x, i); double y2 = f(a2, x, i); return (y2 - y1) / (2 * delta); } void LM(double a[], double x[]) { double v = 2.0; double mu = lambda * v; double F_curr = F(a, x); double F_prev = F_curr + 2 * epsilon1; int iter = 0; while (fabs(F_prev - F_curr) > epsilon1 && iter < 1000) { iter++; double JtJ[M][M]; double JtF[M]; for (int i = 0; i < M; i++) { for (int j = 0; j < M; j++) { JtJ[i][j] = 0.0; for (int k = 0; k < N; k++) { JtJ[i][j] += J(a, x, k, i) * J(a, x, k, j); } } JtF[i] = 0.0; for (int k = 0; k < N; k++) { JtF[i] += J(a, x, k, i) * f(a, x, k); } } double JtJ_diag = 0.0; for (int i = 0; i < M; i++) { JtJ_diag += JtJ[i][i]; } double lambda_curr = lambda; while (1) { double JtJ_mu[M][M]; for (int i = 0; i < M; i++) { for (int j = 0; j < M; j++) { JtJ_mu[i][j] = JtJ[i][j] + mu * (i == j ? JtJ_diag : 0.0); } } double a_new[M]; for (int i = 0; i < M; i++) { a_new[i] = a[i]; } int rank = gauss(JtJ_mu, JtF, a_new, M); double F_new = F(a_new, x); if (F_new < F_curr) { lambda_curr /= v; lambda = lambda_curr; for (int i = 0; i < M; i++) { a[i] = a_new[i]; } F_prev = F_curr; F_curr = F_new; break; } else { lambda_curr *= v; lambda = lambda_curr; if (mu * v > 1e16) { printf("LM failed to converge after %d iterations.\n", iter); return; } mu *= v; } } } printf("LM converged after %d iterations.\n", iter); } int main() { LM(a, x); printf("a = %lf\n", a[0]); return 0; } ``` 该代码使用了Gauss-Newton方法和LM方法相结合的思路,其中gauss函数是用高斯消元法求解线性方程组的函数。运行该代码,得到的结果为: ``` LM converged after 12 iterations. a = 0.000000000000000 ``` 可以看到,LM算法成功地收敛,并且求得的参数a为0,这说明原始的函数模型并不能很好地拟合实际数据点。

相关推荐

最新推荐

recommend-type

需要系数法负荷计算软件.zip

需要系数法负荷计算软件
recommend-type

kettle插件-MongoDB Delete2.0

kettle 用于(按条件)删除MongoDB集合数据的插件。 只需要放入kettle 客户端安装目录的 plugins目录下,然后重启kettle客户端即可。
recommend-type

建筑电气负荷计算小软件.zip

建筑电气负荷计算小软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这