def autoencoder(input_shape): input_img = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(32, (3, 3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='mse') return autoencoder,这是刚刚的模型,如何调整模型的输出张量的大小,使其与标签张量的大小匹配
时间: 2023-09-13 13:08:30 浏览: 72
Graph_AutoEncoder_with_GCMC:Graph_AutoEncoder_with_GCMC
在这个例子中,标签张量的大小为[?, 1000, 1000, 3],而模型输出张量的大小为[?, 125, 125, 3],因此我们需要调整模型的输出张量大小来匹配标签张量的大小。
可以通过添加一个Conv2D层来实现这一点,将输出通道数设置为3,并将卷积核大小设置为(8, 8),步长设置为(8, 8),以便将模型输出张量的大小从[?, 125, 125, 3]调整为[?, 1000, 1000, 3]。以下是修改后的代码:
```
def autoencoder(input_shape):
input_img = Input(shape=input_shape)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(3, (8, 8), activation='relu', padding='same', strides=(8, 8))(x)
decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
return autoencoder
```
通过以上修改,模型的输出张量的大小将从[?, 125, 125, 3]调整为[?, 1000, 1000, 3],可以与标签张量的大小匹配。
阅读全文