def forward(self, input_data, attention_mask=None, labels=None, position_ids=None, inputs_embeds=None, head_mask=None): outputs = self.bert(input_data, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds) sequence_output = outputs[0] # 去除cls,(batch,seq) sequence_output = sequence_output[:, 1:] sequence_output = self.dropout(sequence_output) # 得到判别值 logits = self.classifier(sequence_output) outputs = (logits,) if labels is not None: loss_mask = labels.gt(-1) loss = self.crf(logits, labels, loss_mask) * (-1) outputs = (loss,) + outputs # contain: (loss), scores return outputs
时间: 2024-02-15 18:29:03 浏览: 218
MNIST_data
这是BertNER模型的前向传播函数,输入参数包括input_data,attention_mask,labels,position_ids,inputs_embeds,head_mask。其中,input_data是输入的文本数据,attention_mask是掩码,用于指示哪些词是padding,labels是标注序列,position_ids是位置编码,inputs_embeds是词嵌入向量,head_mask是多头注意力层的掩码。
在函数中,首先将输入数据input_data输入到BERT模型中,得到输出outputs,其中outputs[0]表示BERT模型的输出特征。接着,去掉输出特征中的[CLS]标记,并通过dropout层进行随机失活。然后,将输出特征输入到线性分类器中,得到每个位置上的标记得分,即预测值。如果labels不为空,则计算损失值,并将损失值添加到输出outputs中。最后,返回输出outputs。
阅读全文