green_approx = cv2.approxPolyDP(contour, 0.04 * cv2.arcLength(contour, True), True)

时间: 2024-04-09 18:31:32 浏览: 179
这是一个用于多边形逼近的函数调用。cv2.approxPolyDP()函数的作用是对给定的轮廓进行多边形逼近。 在这个函数中,参数contour是输入的轮廓,0.04 * cv2.arcLength(contour, True)是指定逼近精度的参数,True表示轮廓是闭合的。 函数返回一个多边形逼近得到的轮廓,保存在green_approx中。
相关问题

cv2.approxPolyDP 示例

下面是一个使用cv2.approxPolyDP函数的简单示例: 假设我们有一个图像中的轮廓,如下图所示: ![image](https://img-blog.csdn.net/20180420180247478) 我们想将该轮廓近似为一个较简单的形状,可以使用cv2.approxPolyDP函数。 代码示例: ```python import cv2 # 读取图像并转换为灰度图像 img = cv2.imread('contour.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化处理 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 查找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 轮廓近似处理 epsilon = 0.01 * cv2.arcLength(contours[0], True) approx = cv2.approxPolyDP(contours[0], epsilon, True) # 绘制轮廓和近似形状 cv2.drawContours(img, [contours[0]], -1, (0, 255, 0), 3) cv2.drawContours(img, [approx], -1, (0, 0, 255), 3) # 显示结果 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 运行结果: ![image](https://img-blog.csdn.net/20180420180401632) 其中,红色线条表示近似后的形状,绿色线条表示原始轮廓。

cv2.approxPolyDP函数对轮廓进行逼近,怎么判断逼近后的轮廓是否是闭合轮廓

cv2.approxPolyDP函数可以通过设置epsilon参数的值来控制逼近程度,返回一个近似的多边形轮廓。如果逼近后的轮廓的第一个点与最后一个点的距离小于一定阈值,则可以判断该轮廓是闭合轮廓。例如代码: ``` python import cv2 img = cv2.imread('example.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: epsilon = 0.01 * cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, epsilon, True) if approx[0][0][0] == approx[-1][0][0] and approx[0][0][1] == approx[-1][0][1]: print("This is a closed contour.") else: print("This is an open contour.") ``` 在上面的代码中,我们使用Canny算法检测边缘,然后使用findContours函数找到所有轮廓。对于每个轮廓,我们使用approxPolyDP函数进行逼近,并通过判断第一个点和最后一个点的距离来判断该轮廓是否闭合。
阅读全文

相关推荐

def detect_shapes(frame): # 将图像转换为HSV颜色空间 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 红色范围 lower_red = np.array([0, 100, 100]) upper_red = np.array([10, 255, 255]) red_mask1 = cv2.inRange(hsv, lower_red, upper_red) lower_red = np.array([160, 100, 100]) upper_red = np.array([179, 255, 255]) red_mask2 = cv2.inRange(hsv, lower_red, upper_red) red_mask = red_mask1 + red_mask2 # 蓝色范围 lower_blue = np.array([90, 100, 100]) upper_blue = np.array([130, 255, 255]) blue_mask = cv2.inRange(hsv, lower_blue, upper_blue) # 查找轮廓 contours, _ = cv2.findContours(red_mask + blue_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # 计算轮廓的近似形状 epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # 获取轮廓的外接矩形 x, y, w, h = cv2.boundingRect(approx) # 根据轮廓的顶点数和颜色进行分类 if len(approx) == 3: if np.any(red_mask[y:y+h, x:x+w]): shape_label = "Red Triangle" else: shape_label = "Blue Triangle" elif len(approx) == 4: if np.any(red_mask[y:y+h, x:x+w]): shape_label = "Red Square" else: shape_label = "Blue Square" elif len(approx) > 4: if np.any(red_mask[y:y+h, x:x+w]): shape_label = "Red Circle" else: shape_label = "Blue Circle" else: shape_label = "Unknown" # 在图像上绘制边界框和标签https://cdn-static-devbit.csdn.net/ai100/chat/imgs/icon-send-active.png cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(frame, shape_label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0),

def Process(img): # 高斯平滑 gaussian = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)#高斯模糊函数 median = cv2.medianBlur(gaussian, 5)#中值滤波 sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3)#Sobel算子,梯度方向是X # 二值化 ret, binary = cv2.threshold(sobel,200, 255, cv2.THRESH_BINARY)#cv2简单阙值函数 # 核函数 element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))#得到一个结构元素(卷积核)。主要用于后续的腐蚀、膨胀等运算。 element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7)) dilation = cv2.dilate(binary, element2, iterations=1)#膨胀函数 # 腐蚀 erosion = cv2.erode(dilation, element1, iterations=1) # 膨胀 dilation2 = cv2.dilate(erosion, element2, iterations=3) return dilation2 def GetRegion(img): regions = [] # 查找轮廓 contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)#检测图像中物体轮廓 for contour in contours: area = cv2.contourArea(contour)#计算轮廓面积 if (area<2000): continue eps = 0.001* cv2.arcLength(contour, True)#计算封闭轮廓或者曲线的长度 approx = cv2.approxPolyDP(contour, eps, True)#轮廓多边形逼近 rect = cv2.minAreaRect(contour)#求最小面积矩形框 box = cv2.boxPoints(rect)#获取最小面积矩形框的四个顶点坐标 box = np.int0(box)#整型化 height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0]) ratio =float(width) / float(height) if (ratio < 5 and ratio > 1.8): regions.append(box) return regions def detect(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#图片灰度化 prc = Process(gray) regions = GetRegion(prc) print('[INFO]:Detect %d license plates' % len(regions)) for box in regions: cv2.drawContours(img, [box], 0, (0, 0,255), 2) cv2.imwrite(r'C:\Users\86182\Pictures\Saved Pictures\test.png', img) cv2.waitKey(0) cv2.destroyAllWindows()

def Process(img): # 高斯平滑 gaussian = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT) # 中值滤波 median = cv2.medianBlur(gaussian, 5) # Sobel算子 # 梯度方向: x sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3) # 二值化 ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY) # 核函数 element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7)) # 膨胀 dilation = cv2.dilate(binary, element2, iterations=1) # 腐蚀 erosion = cv2.erode(dilation, element1, iterations=1) # 膨胀 dilation2 = cv2.dilate(erosion, element2, iterations=3) return dilation2 def GetRegion(img): regions = [] # 查找轮廓 contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if (area < 7500): continue eps = 1e-3 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, eps, True) rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) box = np.int0(box) height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0]) ratio =float(width) / float(height) if (ratio < 6 and ratio > 1.8): regions.append(box) return regions def detect(img): # 灰度化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) prc = Process(gray) regions = GetRegion(prc) print('[INFO]:Detect %d license plates' % len(regions)) for box in regions: cv2.drawContours(img, [box], 0, (0, 0,255), 2) cv2.imwrite(r'C:\Users\gzy\Pictures\Saved Pictures\xiaoguotu.png', img) cv2.waitKey(0) cv2.destroyAllWindows()请简单描述一下该代码是如何实现车牌检测功能的

最新推荐

recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

【毕业设计】matlab植物虫害检测的系统源码.zip

【毕业设计】matlab植物虫害检测的系统源码.zip
recommend-type

ssm-jsp-大学生兼职平台-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在 IDEA 中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习使用jsp、html构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势