用Python写写一下遗传算法
时间: 2023-04-08 21:03:36 浏览: 103
人工智能,第一次作业,遗传算法,旅行者问题,用Python写出来,包括结果图片。Hnust.
5星 · 资源好评率100%
好的,遗传算法是一种基于生物进化原理的优化算法,可以用于解决复杂的优化问题。在Python中,可以使用遗传算法库DEAP来实现遗传算法。以下是一个简单的遗传算法示例代码:
```python
import random
from deap import base, creator, tools
# 定义适应度函数
def evaluate(individual):
return sum(individual),
# 创建遗传算法工具箱
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 10)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# 定义遗传算法参数
pop = toolbox.population(n=50)
cxpb, mutpb, ngen = 0.5, 0.2, 10
# 运行遗传算法
for g in range(ngen):
offspring = toolbox.select(pop, len(pop))
offspring = list(map(toolbox.clone, offspring))
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < cxpb:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < mutpb:
toolbox.mutate(mutant)
del mutant.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop[:] = offspring
fits = [ind.fitness.values[0] for ind in pop]
print("Generation %i: Max %s" % (g, max(fits)))
```
这个示例代码演示了如何使用DEAP库实现一个简单的遗传算法,其中包括定义适应度函数、创建遗传算法工具箱、定义遗传算法参数、运行遗传算法等步骤。
阅读全文