return calc(x->le) op calc(x->rt);是干什么的

时间: 2024-05-31 12:10:04 浏览: 16
这段代码是对一个二叉树进行递归计算的操作。其中,calc(x->le)表示对当前节点x的左子树进行计算,calc(x->rt)表示对当前节点x的右子树进行计算。op是一个运算符,表示对左右子树的计算结果进行某种运算,例如加减乘除等。最终,返回的是左右子树计算结果的运算结果。这段代码通常用于二叉树的表达式求值,例如计算一个表达式树的值。
相关问题

fp32 PID_calc(pid_type_def *pid, fp32 ref, fp32 set) { if (pid == NULL) { return 0.0f; } pid->error[2] = pid->error[1]; pid->error[1] = pid->error[0]; pid->set = set; pid->fdb = ref; pid->error[0] = set - ref; //最新误差=设定值-反馈数值 if (pid->mode == PID_POSITION) //位置式pid { pid->Pout = pid->Kp * pid->error[0]; //Kp*偏差 pid->Iout += pid->Ki * pid->error[0]; //Ki*偏差和 pid->Dbuf[2] = pid->Dbuf[1]; pid->Dbuf[1] = pid->Dbuf[0]; pid->Dbuf[0] = (pid->error[0] - pid->error[1]); pid->Dout = pid->Kd * pid->Dbuf[0]; //Kd*(偏差-上偏差) LimitMax(pid->Iout, pid->max_iout); pid->out = pid->Pout + pid->Iout + pid->Dout; LimitMax(pid->out, pid->max_out); } else if (pid->mode == PID_DELTA) //增量式pid { pid->Pout = pid->Kp * (pid->error[0] - pid->error[1]); pid->Iout = pid->Ki * pid->error[0]; pid->Dbuf[2] = pid->Dbuf[1]; pid->Dbuf[1] = pid->Dbuf[0]; pid->Dbuf[0] = (pid->error[0] - 2.0f * pid->error[1] + pid->error[2]); pid->Dout = pid->Kd * pid->Dbuf[0]; pid->out += pid->Pout + pid->Iout + pid->Dout; LimitMax(pid->out, pid->max_out); } return 0; }分析以上C语言程序

这段程序实现了一个PID控制器,用于控制一个系统的输出,使其达到所设置的目标值。函数名为PID_calc,接受三个参数:指向PID控制器结构体的指针pid,目标值ref和设置值set。 在函数中,首先判断pid是否为NULL,如果是,则返回0.0f。接下来将当前的误差值存储到pid->error[2]中,上一次的误差值存储到pid->error[1]中,当前误差值计算并存储到pid->error[0]中。根据PID控制器的模式(位置式或增量式),计算P、I、D三个控制量,累加得到输出值pid->out,并对输出值进行限制,最后返回0。 在位置式PID控制器中,P、I、D三个控制量分别表示比例、积分、微分,Pout为比例控制量,Iout为积分控制量,Dout为微分控制量。在增量式PID控制器中,P、I、D三个控制量分别表示比例增量、积分增量、微分增量,Pout为比例增量,Iout为积分增量,Dout为微分增量。

void calc_huffman_codes(HuffNode* root, string code) { if (root->left == nullptr && root->right == nullptr) { // 叶子节点,记录编码 huff_codes[root->word] = code; return; } if (root->left) { calc_huffman_codes(root->left, code + '0'); } if (root->right) { calc_huffman_codes(root->right, code + '1'); } }帮我找出错误

根据代码,无法判断`huff_codes`的类型和作用。如果`huff_codes`是一个数组或者`map`,那么在函数中使用前应该先进行初始化。此外,`root->word`也需要先进行定义或初始化。 另外,建议在函数参数中添加对`root`的非空判断,以避免出现空指针异常。例如: ``` void calc_huffman_codes(HuffNode* root, string code) { if (root == nullptr) { return; } if (root->left == nullptr && root->right == nullptr) { // 叶子节点,记录编码 huff_codes[root->word] = code; return; } if (root->left) { calc_huffman_codes(root->left, code + '0'); } if (root->right) { calc_huffman_codes(root->right, code + '1'); } } ```

相关推荐

#ifndef Node_hpp #define Node_hpp #include <stdio.h> class Node { public: virtual double Calc() const =0; virtual ~Node(){}; }; class NumberNode:public Node { public: double Calc() const; NumberNode(double number):number_(number){}; private: const double number_; }; class BinaryNode:public Node { public: BinaryNode(Node* left,Node* right):left_(left),right_(right){} ~BinaryNode(); protected: Node* const left_; Node* const right_; }; class UnaryNode:public Node { public: double Calc() const; UnaryNode(Node* child):child_(child){} ~UnaryNode(); protected: Node* const child_; }; class AddNode:public BinaryNode { public: AddNode(Node* left,Node* right):BinaryNode(left,right){} double Calc() const; }; class SubNode:public BinaryNode { public: SubNode(Node* left,Node* right):BinaryNode(left,right){} double Calc() const; }; class MultiplyNode:public BinaryNode { public: MultiplyNode(Node* left,Node* right):BinaryNode(left,right){} double Calc() const; }; class DivideNode:public BinaryNode { public: DivideNode(Node* left,Node* right):BinaryNode(left,right){} double Calc() const; }; class UMinusNode:public UnaryNode { public: UMinusNode(Node* child):UnaryNode(child){} double Calc() const; }; #endif#include "Node.hpp" #include <iostream> using namespace std; #include <cmath> double NumberNode:: Calc() const{ return number_; } BinaryNode::~BinaryNode(){ delete left_; delete right_; } UnaryNode::~UnaryNode(){ delete child_; } double AddNode:: Calc() const{ return left_->Calc()+right_->Calc(); } double SubNode:: Calc() const{ return left_->Calc()-right_->Calc(); } double MultiplyNode::Calc() const{ return left_->Calc()*right_->Calc(); } double DivideNode:: Calc() const{ double divisor=right_->Calc(); if (divisor!=0.0) { return left_->Calc()/divisor; } else { cout<<"Error:divisor by zreo"<<endl; return HUGE_VAL; } return left_->Calc()+right_->Calc(); } double UMinusNode::Calc() const{ return - child_->Calc(); }

<?php namespace App\Models; use Illuminate\Database\Eloquent\Model; use Illuminate\Support\Facades\DB; class WebModel extends Model { /** * Create a new Eloquent model instance. * * @param array $attributes */ public function __construct() { $this->setTable('pms_web'); parent::__construct(); } const STATUS_NORMAL = 1; //正常 const STATUS_FREEZE = 2; //冻结 public static function Enum($sign = "") { $status = [ 'status' => [ self::STATUS_NORMAL, self::STATUS_FREEZE ] ]; return isset($status[$sign]) ? $status[$sign] : $status; } public function WebDb() { return DB::table($this->getTable(),'w'); } public function FindOne($content, $param = "id") { $result = $this->WebDb()->where($param, $content)->select(DB::raw('id'))->first(); if (empty($result)) { return ''; } return $this->FormatOne($result); } public function FindList($params) { $query = $this->WebDb(); $query->select( DB::raw('SQL_CALC_FOUND_ROWS id') ); $query->limit($params['per_page']); $query->offset($params['offset']); $query->orderByDesc('w.id'); $result = $query->get(); $return_result = array( 'total' => 0, 'data' => [], ); if (empty($result)) { return $return_result; } $fromat_result = $this->FormatList($result); $total = DB::select("select FOUND_ROWS() as num")[0]->num; return [ 'total' => $total, 'data' => $fromat_result, ]; } public function FormatList(&$result) { foreach ($result as $v) { $this->FormatOne($v); } return $result; } public function FormatOne(&$result) { return $result; } public function simpleSave($data, $where = []) { } }

解释这段代码static void chassis_control_loop(chassis_move_t *chassis_move_control_loop) { fp32 max_vector = 0.0f, vector_rate = 0.0f; fp32 temp = 0.0f; fp32 wheel_speed[4] = {0.0f, 0.0f, 0.0f, 0.0f}; uint8_t i = 0; float position_error, speed_error; float position_output, speed_output; float current_position, current_speed; float target_position, target_speed; chassis_move_control_loop->vx_set=vx_set; chassis_move_control_loop->vy_set=vy_set; chassis_move_control_loop->wz_set=angle_set; chassis_vector_to_mecanum_wheel_speed(chassis_move_control_loop->vx_set, chassis_move_control_loop->vy_set, chassis_move_control_loop->wz_set, wheel_speed); if (chassis_move_control_loop->chassis_mode == CHASSIS_VECTOR_RAW) { for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(wheel_speed[i]); } } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set = wheel_speed[i]; temp = fabs(chassis_move_control_loop->motor_chassis[i].speed_set); if (max_vector < temp) { max_vector = temp; } } if (max_vector > MAX_WHEEL_SPEED) { vector_rate = MAX_WHEEL_SPEED / max_vector; for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].speed_set *= vector_rate; } } for (i = 0; i < 4; i++) { PID_Calc(&chassis_move_control_loop->motor_speed_pid[i], chassis_move_control_loop->motor_chassis[i].speed, chassis_move_control_loop->motor_chassis[i].speed_set); } for (i = 0; i < 4; i++) { chassis_move_control_loop->motor_chassis[i].give_current = (int16_t)(chassis_move_control_loop->motor_speed_pid[i].out); } }

static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; }static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { //ָ���ж��׺��Եļ��㷽���Ͳ��� .pre_vectors = 1, .calc_sets = nvme_set_irq_affinity, //nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } 在 Linux 5.17.12 内核版本中,可以通过修改 pci_alloc_irq_vectors_affinity() 函数的 affinity_hint 参数来绑定 NVMe 驱动的所有 I/O 队列到同一 CPU 核心上。

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC绩效考核指标汇总 (3).pdf

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。