anchor_t对模型有什么影响

时间: 2024-02-26 12:51:39 浏览: 13
anchor_t通常用于目标检测中的锚点框设置,它表示在输入图片中建立的框的中心点相对于当前位置的偏移量。anchor_t的大小和形状对于模型的输出结果有很大的影响,因为它们直接影响了模型学习到的目标大小和位置信息。如果anchor_t设置得不合理,可能会导致模型无法准确地检测到目标或者误检测到一些不相关的区域。因此,在目标检测中,通常需要根据不同的数据集和任务来选择合适的anchor_t大小和形状来提高模型的检测精度。
相关问题

anchor_t:4.0是什么意思?

"anchor_t:4.0"通常用于目标检测中的锚框(anchor box)。锚框是一种预定义的框,用于在图像中生成多个候选区域,以便在这些区域中检测目标物体。在目标检测模型中,通常会为每个锚框分配一个分类概率(表示该锚框是否包含目标物体)和一个回归向量(用于调整锚框的位置和大小)。其中,"anchor_t:4.0"表示该锚框的尺度为4.0倍,具体含义取决于具体的目标检测模型和数据集。

解释代码 static int process(int8_t* input, int* anchor, int grid_h, int grid_w, int height, int width, int stride, std::vector<float>& boxes, std::vector<float>& objProbs, std::vector<int>& classId, float threshold, int32_t zp, float scale) { int validCount = 0; int grid_len = grid_h * grid_w; float thres = unsigmoid(threshold); int8_t thres_i8 = qnt_f32_to_affine(thres, zp, scale); for (int a = 0; a < 3; a++) { for (int i = 0; i < grid_h; i++) { for (int j = 0; j < grid_w; j++) { int8_t box_confidence = input[(PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j]; if (box_confidence >= thres_i8) { int offset = (PROP_BOX_SIZE * a) * grid_len + i * grid_w + j; int8_t* in_ptr = input + offset; float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5; float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5; float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0; float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0; box_x = (box_x + j) * (float)stride; box_y = (box_y + i) * (float)stride; box_w = box_w * box_w * (float)anchor[a * 2]; box_h = box_h * box_h * (float)anchor[a * 2 + 1]; box_x -= (box_w / 2.0); box_y -= (box_h / 2.0); boxes.push_back(box_x); //push_back() 在Vector最后添加一个元素 boxes.push_back(box_y); boxes.push_back(box_w); boxes.push_back(box_h); int8_t maxClassProbs = in_ptr[5 * grid_len]; int maxClassId = 0; for (int k = 1; k < OBJ_CLASS_NUM; ++k) { int8_t prob = in_ptr[(5 + k) * grid_len]; if (prob > maxClassProbs) { maxClassId = k; maxClassProbs = prob; } } objProbs.push_back(sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale))); classId.push_back(maxClassId); validCount++; } } } } return validCount; }

这段代码实现了一个目标检测的后处理函数。具体解释如下: 函数参数: - `input`:输入的 int8_t 类型指针,表示模型输出的特征图。 - `anchor`:包围框的 anchor 锚点,用于计算检测框的位置和大小。 - `grid_h`、`grid_w`:特征图的高度和宽度。 - `height`、`width`:输入图像的高度和宽度。 - `stride`:特征图相对于输入图像的缩放因子。 - `boxes`:存储检测框位置和大小的向量。 - `objProbs`:存储目标置信度的向量。 - `classId`:存储目标类别的向量。 - `threshold`:目标置信度的阈值。 - `zp`、`scale`:量化参数,用于将 int8_t 类型转换为 float 类型。 函数功能: 1. 初始化有效目标计数 `validCount` 为 0。 2. 将阈值 `threshold` 经过反 sigmoid 函数转换为浮点数类型,并使用量化参数将其转换为 int8_t 类型,并赋值给 `thres_i8`。 3. 使用三重循环遍历特征图上的每个格子。 4. 在每个格子上,获取对应的检测框置信度 `box_confidence`,如果其大于等于阈值 `thres_i8`,则表示存在有效目标。 5. 计算检测框的偏移量 `offset`,并通过指针 `in_ptr` 指向对应的检测框信息。 6. 使用量化参数将检测框的位置和大小信息转换为浮点数类型,并进行逆 sigmoid 函数转换。 7. 根据格子的位置、缩放因子和 anchor 锚点,计算得到检测框的真实位置和大小。 8. 将计算得到的检测框位置和大小添加到 `boxes` 向量中。 9. 遍历目标类别,找到具有最大概率的类别,并记录其概率和类别编号。 10. 将目标置信度和类别编号添加到 `objProbs` 和 `classId` 向量中。 11. 增加有效目标计数 `validCount`。 12. 循环结束后,返回有效目标计数。 通过这样的处理过程,可以从模型输出的特征图中提取出有效的目标检测结果,并将检测框的位置、大小、目标置信度和类别编号存储在相应的向量中。

相关推荐

解释代码:int post_process(int8_t* input0, int8_t* input1, int8_t* input2, int model_in_h, int model_in_w, float conf_threshold, float nms_threshold, float scale_w, float scale_h, std::vector<int32_t>& qnt_zps, std::vector<float>& qnt_scales, detect_result_group_t* group) { static int init = -1; if (init == -1) { int ret = 0; ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); if (ret < 0) { return -1; } init = 0; } memset(group, 0, sizeof(detect_result_group_t)); std::vector<float> filterBoxes; std::vector<float> objProbs; std::vector<int> classId; // stride 8 int stride0 = 8; int grid_h0 = model_in_h / stride0; int grid_w0 = model_in_w / stride0; int validCount0 = 0; validCount0 = process(input0, (int*)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[0], qnt_scales[0]); // stride 16 int stride1 = 16; int grid_h1 = model_in_h / stride1; int grid_w1 = model_in_w / stride1; int validCount1 = 0; validCount1 = process(input1, (int*)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[1], qnt_scales[1]); // stride 32 int stride2 = 32; int grid_h2 = model_in_h / stride2; int grid_w2 = model_in_w / stride2; int validCount2 = 0; validCount2 = process(input2, (int*)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[2], qnt_scales[2]); int validCount = validCount0 + validCount1 + validCount2; // no object detect if (validCount <= 0) { return 0; } std::vector<int> indexArray; for (int i = 0; i < validCount; ++i) { indexArray.push_back(i); } quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray); std::set<int> class_set(std::begin(classId), std::end(classId)); for (auto c : class_set) { nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold); } int last_count = 0; group->count = 0; /* box valid detect target */ for (int i = 0; i < validCount; ++i) { if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE) { continue; } int n = indexArray[i]; float x1 = filterBoxes[n * 4 + 0]; float y1 = filterBoxes[n * 4 + 1]; float x2 = x1 + filterBoxes[n * 4 + 2]; float y2 = y1 + filterBoxes[n * 4 + 3]; int id = classId[n]; float obj_conf = objProbs[i]; group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w); group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h); group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w); group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h); group->results[last_count].prop = obj_conf; char* label = labels[id]; strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE); // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, // group->results[last_count].box.top, // group->results[last_count].box.right, group->results[last_count].box.bottom, label); last_count++; } group->count = last_count; return 0; }

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这