def collect_torch_env() -> str: try: import torch.__config__ return torch.__config__.show() except ImportError: # compatible with older versions of pytorch from torch.utils.collect_env import get_pretty_env_info return get_pretty_env_info()

时间: 2023-06-24 19:05:35 浏览: 182
这是一个 Python 函数,用于收集 Torch 的环境信息,并将其返回为字符串。如果 Torch 模块已经安装并导入成功,它会使用 `torch.__config__.show()` 函数来获取环境信息;否则,它会使用 `torch.utils.collect_env.get_pretty_env_info()` 函数兼容旧版本的 Torch 来获取环境信息。 你可以将该函数用于调试 Torch 相关的问题,以便更好地理解 Torch 的运行环境。
相关问题

def logging_train_setup(args, cfg) -> None: output_dir = cfg.OUTPUT_DIR if output_dir: PathManager.mkdirs(output_dir) logger = logging.setup_logging( cfg.NUM_GPUS, get_world_size(), output_dir, name="visual_prompt") # Log basic information about environment, cmdline arguments, and config rank = get_rank() logger.info( f"Rank of current process: {rank}. World size: {get_world_size()}") logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info( "Contents of args.config_file={}:\n{}".format( args.config_file, PathManager.open(args.config_file, "r").read() ) ) # Show the config logger.info("Training with config:") logger.info(pprint.pformat(cfg)) # cudnn benchmark has large overhead. # It shouldn't be used considering the small size of typical val set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK

这段代码是用来设置训练日志的。首先,它会创建一个输出目录。然后,它会使用logging模块设置日志,其中包括环境信息、命令行参数、配置信息和当前进程的排名等。如果有配置文件,它还会将配置文件的内容记录在日志中。接着,它会显示训练配置,并设置是否使用cudnn benchmark。如果args中有eval_only属性且为True,那么不会使用cudnn benchmark。

tianshou基于pytorch的SACPolicy连续空间算法算法训练,输出训练模型pth,并利用writer.add_graph输出网络结构

好的,您可以按照以下步骤使用tianshou进行SACPolicy的训练,并且输出训练模型pth,并利用writer.add_graph输出网络结构。 1. 安装tianshou 您可以使用以下命令安装最新版本的tianshou: ``` pip install tianshou ``` 2. 构建环境 您需要构建一个gym环境,然后将其传递给tianshou的环境包装器。以下是一个示例环境: ```python import gym import numpy as np class MyEnv(gym.Env): def __init__(self): self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.state = np.zeros((1,)) def reset(self): self.state = np.zeros((1,)) return self.state def step(self, action): action = np.clip(action, -1, 1) reward = -np.abs(action) self.state += action done = False return self.state, reward, done, {} ``` 在这个环境中,我们使用一个连续的动作空间和一个连续的观测空间,每个步骤的奖励为动作的绝对值的负数。 3. 定义模型 使用tianshou的智能体API,我们可以定义我们的SACPolicy模型: ```python import torch import torch.nn.functional as F from tianshou.policy import SACPolicy class MyModel(torch.nn.Module): def __init__(self, obs_shape, action_shape): super().__init__() self.obs_dim = obs_shape[0] self.act_dim = action_shape[0] self.fc1 = torch.nn.Linear(self.obs_dim, 64) self.fc2 = torch.nn.Linear(64, 64) self.mu_head = torch.nn.Linear(64, self.act_dim) self.sigma_head = torch.nn.Linear(64, self.act_dim) self.value_head = torch.nn.Linear(64, 1) def forward(self, obs, state=None, info={}): x = F.relu(self.fc1(obs)) x = F.relu(self.fc2(x)) mu = self.mu_head(x) sigma = F.softplus(self.sigma_head(x)) value = self.value_head(x) dist = torch.distributions.Normal(mu, sigma) return dist, value ``` 在这个模型中,我们使用两个完全连接的层来处理观察,并将输出分别传递到一个均值头和一个标准差头中。我们还添加了一个价值头来估计每个状态的价值。最后,我们将均值和标准差组合成一个正态分布,以便我们可以从中采样动作。 4. 训练模型 使用tianshou的训练API,我们可以定义我们的训练循环: ```python import torch.optim as optim from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from torch.utils.tensorboard import SummaryWriter env = MyEnv() train_envs = gym.make('MyEnv-v0') test_envs = gym.make('MyEnv-v0') # 建立replay buffer buffer = ReplayBuffer(size=10000, buffer_num=1) # 建立collector train_collector = Collector(policy, train_envs, buffer) test_collector = Collector(policy, test_envs) # 建立optimizer optimizer = optim.Adam(policy.parameters(), lr=3e-4) # 定义训练循环 result = offpolicy_trainer( policy, train_collector, test_collector, optimizer, max_epoch=100, step_per_epoch=1000, collect_per_step=1, episode_per_test=10, batch_size=64, train_fn=None, test_fn=None, stop_fn=None, writer=writer, verbose=True) ``` 在这个循环中,我们首先创建一个回放缓冲区和一个collector,然后使用Adam优化器来优化我们的模型参数。我们使用offpolicy_trainer方法来训练我们的模型,其中我们设置了一些超参数,如最大epoch数、每个epoch的步数、每个步骤的收集数等。 5. 输出模型 训练完成后,我们可以将模型保存为一个.pth文件: ```python torch.save(policy.state_dict(), 'model.pth') ``` 6. 输出网络结构 最后,我们可以使用以下代码将网络结构写入TensorBoard: ```python writer.add_graph(policy, torch.zeros((1, 1))) ``` 在这个例子中,我们使用一个大小为1的观察空间,以便我们可以将模型传递给writer.add_graph方法。这将在TensorBoard中显示我们的网络结构。
阅读全文

相关推荐

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

YOLO算法-椅子检测故障数据集-300张图像带标签.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

基于小程序的新冠抗原自测平台小程序源代码(java+小程序+mysql+LW).zip

系统可以提供信息显示和相应服务,其管理新冠抗原自测平台小程序信息,查看新冠抗原自测平台小程序信息,管理新冠抗原自测平台小程序。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 部署容器:tomcat7 小程序开发工具:hbuildx/微信开发者工具
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。