怎么在驱动中设置一个全局标志位

时间: 2024-03-22 11:42:13 浏览: 20
在驱动中设置全局标志位的方法有很多,以下是其中一种: 1. 在驱动的头文件中定义全局变量,例如: ``` extern int global_flag; ``` 2. 在驱动的初始化函数中初始化全局变量,例如: ``` static int __init my_driver_init(void) { global_flag = 0; // ... } ``` 3. 在驱动的其他函数中使用全局变量,例如: ``` static int my_driver_open(struct inode *inode, struct file *filp) { // ... if (global_flag) { // do something } // ... } ``` 注意,在多核系统中,全局变量可能会出现竞争条件,需要使用同步机制来保护全局变量的读写。
相关问题

在TI DSP中运行,写C语言SPWM产生程序

SPWM(正弦波脉宽调制)是一种常见的交流电变频调速技术,常用于交流电机驱动等领域。在TI DSP上实现SPWM产生程序可以通过以下步骤完成: 1. 初始化IO口和定时器:根据具体的DSP型号和开发板,使用相应的头文件和函数库初始化IO口和定时器。 2. 计算SPWM的占空比:根据所需输出的正弦波频率和振幅,计算每个采样周期的占空比。具体计算方法可以参考SPWM的原理,也可以通过查找相关资料进行了解。 3. 设置定时器自动重载模式:在每个采样周期结束时,使用定时器自动重载模式重新加载占空比值,以实现连续的SPWM波形输出。 4. 运行SPWM产生程序:将SPWM的占空比值写入定时器的比较寄存器中,启动定时器,并在每个采样周期结束时更新占空比值,实现连续的SPWM波形输出。 以下是一个简单的C语言SPWM产生程序示例: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" #define PI 3.1415926 #define SAMPLING_FREQ 20000 //采样频率,单位为Hz #define PWM_FREQ 50 //SPWM波形频率,单位为Hz #define PWM_AMPLITUDE 1 //SPWM波形振幅,取值范围为0~1 Uint16 spwm_duty[100]; //SPWM占空比数组 Uint16 spwm_index; //当前SPWM占空比在数组中的索引 //计算SPWM占空比值 void calc_spwm_duty(void) { int i; float freq_ratio = PWM_FREQ / (float)SAMPLING_FREQ; //计算频率比值 for(i = 0; i < 100; i++) { spwm_duty[i] = (Uint16)(PWM_AMPLITUDE * sin(2 * PI * freq_ratio * i) * 1000 + 1000); //计算SPWM占空比值 } } void main() { InitSysCtrl(); //初始化系统时钟 InitPieCtrl(); //初始化PIE中断 IER = 0x0000; //禁止所有中断 IFR = 0x0000; InitPieVectTable(); //初始化PIE中断向量表 EALLOW; GpioCtrlRegs.GPAMUX1.all = 0; //将GPIO口设置为普通IO口模式 GpioCtrlRegs.GPADIR.all = 0xFF; //将GPIO口设置为输出模式 EDIS; InitCpuTimers(); //初始化定时器 ConfigCpuTimer(&CpuTimer0, 150, 1000000 / SAMPLING_FREQ); //配置定时器 PieVectTable.TINT0 = &cpu_timer0_isr; //设置定时器中断向量 IER |= M_INT1; //使能PIE中断 PieCtrlRegs.PIEIER1.bit.INTx7 = 1; //使能定时器中断 EINT; //使能全局中断 calc_spwm_duty(); //计算SPWM占空比值 spwm_index = 0; //初始化SPWM占空比索引 while(1) { //等待定时器中断 } } //定时器中断服务函数 interrupt void cpu_timer0_isr(void) { CpuTimer0Regs.TCR.bit.TIF = 1; //清除定时器中断标志位 GpioDataRegs.GPASET.all = 0xFF; //设置所有GPIO口为高电平 GpioDataRegs.GPADAT.all = spwm_duty[spwm_index]; //设置当前SPWM占空比值 spwm_index++; //更新SPWM占空比索引 if(spwm_index >= 100) { spwm_index = 0; //超过数组长度时,重置SPWM占空比索引 } } ``` 注意:以上代码仅供参考,在实际应用中需要根据具体的DSP型号和开发板进行适当的修改。同时,由于SPWM产生程序需要高精度的定时控制,因此需要注意系统时钟的设置和定时器的溢出时间等参数的配置。

写一个stm32f103接受RS485数据并显示在OLED屏上的程序

以下是一个基本的示例程序,演示如何在STM32F103上接收RS485数据并将其显示在OLED屏幕上。这个程序使用了HAL库,并假定你已经配置了串口和OLED屏幕。 ```c #include "stm32f1xx_hal.h" #define OLED_ADDR 0x78 // OLED屏幕地址 #define RS485_ADDR 0x01 // RS485设备地址 UART_HandleTypeDef huart3; // 串口句柄 uint8_t rx_data[1]; // 串口接收缓冲区 uint8_t tx_data[1]; // 串口发送缓冲区 void OLED_Write_Command(uint8_t command) { tx_data[0] = 0x00; // 指令标志 HAL_I2C_Master_Transmit(&hi2c1, OLED_ADDR, tx_data, 1, 100); tx_data[0] = command; HAL_I2C_Master_Transmit(&hi2c1, OLED_ADDR, tx_data, 1, 100); } void OLED_Init(void) { // 初始化OLED屏幕 OLED_Write_Command(0xAE); // 关闭显示 OLED_Write_Command(0xD5); // 设置时钟分频因子 OLED_Write_Command(0x80); // 时钟分频因子 OLED_Write_Command(0xA8); // 设置驱动路数 OLED_Write_Command(0x3F); // 驱动路数 OLED_Write_Command(0xD3); // 设置显示偏移 OLED_Write_Command(0x00); // 显示偏移 OLED_Write_Command(0x40); // 设置显示起始行 OLED_Write_Command(0x8D); // 电荷泵设置 OLED_Write_Command(0x14); // 电荷泵设置 OLED_Write_Command(0x20); // 设置内存地址模式 OLED_Write_Command(0x02); // 内存地址模式:页地址模式 OLED_Write_Command(0xA1); // 列地址映射 OLED_Write_Command(0xC8); // 倒置显示 OLED_Write_Command(0xDA); // 设置COM硬件引脚配置 OLED_Write_Command(0x12); // COM硬件引脚配置 OLED_Write_Command(0x81); // 对比度设置 OLED_Write_Command(0xCF); // 对比度设置 OLED_Write_Command(0xD9); // 预充电周期设置 OLED_Write_Command(0xF1); // 预充电周期设置 OLED_Write_Command(0xDB); // VCOMH 电压倍率设置 OLED_Write_Command(0x40); // VCOMH 电压倍率设置 OLED_Write_Command(0xA4); // 全局显示开启 OLED_Write_Command(0xA6); // 显示方式:正常显示 OLED_Write_Command(0xAF); // 开启显示 } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 串口接收完成回调函数 if (rx_data[0] == RS485_ADDR) { // 如果接收到的数据是RS485设备发送的,将其显示在OLED屏幕上 OLED_Write_Command(0x00); // 数据标志 HAL_I2C_Master_Transmit(&hi2c1, OLED_ADDR, rx_data, 1, 100); } HAL_UART_Receive_IT(&huart3, (uint8_t *)rx_data, 1); // 启动下一次接收 } int main(void) { HAL_Init(); OLED_Init(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_AFIO_CLK_ENABLE(); __HAL_RCC_USART3_CLK_ENABLE(); __HAL_RCC_I2C1_CLK_ENABLE(); // 配置USART3为RS485通讯用途 GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); huart3.Instance = USART3; huart3.Init.BaudRate = 9600; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; HAL_UART_Init(&huart3); HAL_UART_Receive_IT(&huart3, (uint8_t *)rx_data, 1); // 配置I2C1为OLED通讯用途 GPIO_InitStruct.Pin = GPIO_PIN_6 | GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 400000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; HAL_I2C_Init(&hi2c1); while (1) {} } ``` 在这个程序中,我们使用了HAL库来配置串口和I2C总线,并使用回调函数来接收串口数据并将其显示在OLED屏幕上。需要注意的是,我们假定RS485设备的地址是0x01,如果你的设备地址不同,需要相应地修改代码。

相关推荐

完善用msp430f5529单片机实现的比赛计时计分器的代码#include <msp430.h> unsigned int seconds = 0; // 记录秒数 unsigned int minutes = 0; // 记录分钟数 unsigned int home_score = 0; // 主队得分 unsigned int guest_score = 0; // 客队得分 void main(void){ WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器 // 配置定时器A TA0CTL = TASSEL_2 + MC_1 + ID_3; // 选择SMCLK作为时钟源,以1:8的分频计数模式 TA0CCR0 = 62500; // 定时器计数到62500时产生中断,即1秒钟 TA0CCTL0 = CCIE; // 允许定时器A中断 // 配置按键中断 P1DIR &= ~(BIT1 + BIT2); // P1.1和P1.2作为输入 P1REN |= BIT1 + BIT2; // P1.1和P1.2启用上拉电阻 P1OUT |= BIT1 + BIT2; // P1.1和P1.2上拉 P1IE |= BIT1 + BIT2; // P1.1和P1.2开启中断 P1IES |= BIT1 + BIT2; // P1.1和P1.2设置为下降沿触发 P1IFG &= ~(BIT1 + BIT2); // 清除P1.1和P1.2的中断标志位 // 配置LED灯 P4DIR |= BIT7; // P4.7作为输出 __enable_interrupt(); // 开启全局中断 while(1) { // 显示计时器和得分 P4OUT |= BIT7; // 点亮LED灯 __delay_cycles(500000); // 延时0.5秒 P4OUT &= ~BIT7; // 熄灭LED灯 __delay_cycles(500000); // 延时0.5秒 } } #pragma vector=TIMER0_A0_VECTOR // 定时器A中断服务程序 __interrupt void Timer_A(void){ seconds++; // 秒数加1 if(seconds == 60) // 一分钟过去了 { seconds = 0; // 秒数清零 minutes++; // 分钟数加1 } if(minutes == 45) // 比赛结束 { TA0CTL = MC_0; // 停止定时器A } } #pragma vector=PORT1_VECTOR // 按键中断服务程序 __interrupt void Port_1(void){ if(P1IFG & BIT1) // P1.1的中断标志位被触发了 { home_score++; // 主队加分 } else if(P1IFG & BIT2) // P1.2的中断标志位被触发了 { guest_score++; // 客队加分 } P1IFG &= ~(BIT1 + BIT2); // 清除P1.1和P1.2的中断标志位} }

最新推荐

recommend-type

LED点阵矩阵时钟3216

//*备注:此是我刚接触单片机时的一个小制作 程序和电路设计上难免有不足之处 请谅解 //===================================================================================// #include #include #define uchar...
recommend-type

一段基于Rust语言的计算斐波那契数列的代码

一段基于Rust语言的计算斐波那契数列的代码
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见
recommend-type

abap dialog单选框画屏

在ABAP中,可以使用Dialog Programming来创建屏幕和用户界面。要创建一个ABAP Dialog单选框画屏,可以按照以下步骤进行操作: 1. 首先,在ABAP编辑器中创建一个新的屏幕画面(Screen Painter)。 2. 在屏幕画面上,选择“元素”工具栏中的“单选按钮”(Radio Button)工具。 3. 在屏幕上点击并拖动鼠标,绘制一个单选按钮的区域。 4. 在属性窗口中,为单选按钮指定一个唯一的名称和描述。 5. 可以选择设置单选按钮的默认状态(选中或未选中)。 6. 如果需要,可以在屏幕上添加其他的单选按钮。 7. 完成屏幕设计后,保存并激活屏幕画面。 在A