你帮我写一个优化的代码
时间: 2023-08-28 20:38:24 浏览: 250
【手写数字识别】基于支持向量机SVM实现手写数字识别matlab源码含GUI.md
5星 · 资源好评率100%
好的,以下是一个简单的优化代码示例,可以供您参考:
```
import jieba
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
class MyDataset():
def __init__(self, max_vocab_size=5000, min_word_freq=1):
self.max_vocab_size = max_vocab_size
self.min_word_freq = min_word_freq
self.vocab = {}
self.stop_words = []
def set_stopword(self, path='data/scu_stopwords'):
with open(path, 'r', encoding='utf-8') as fr:
self.stop_words = [line.strip() for line in fr.readlines()]
def build_vocab(self, inputs):
cnt = Counter()
for data in inputs:
data = jieba.lcut(data)
for word in data:
if word not in self.stop_words:
cnt[word] += 1
cnt = sorted([_ for _ in cnt.items() if _[1] >= self.min_word_freq], key=lambda t:t[1], reverse=True)
self.vocab['<pad>'] = 0
for i, (w, _) in enumerate(cnt[:self.max_vocab_size]):
self.vocab[w] = i + 1
def transform(self, inputs):
samples = []
for doc in inputs:
doc = jieba.lcut(doc)
sample = [0] * len(self.vocab)
for word in doc:
if word in self.vocab:
sample[self.vocab[word]] += 1
samples.append(sample)
return samples
def optimize_model(train_X, train_Y):
# 定义分类器
clf = SVC()
# 定义超参数搜索空间
param_grid = {
'C': [0.1, 1, 10],
'kernel': ['linear', 'rbf']
}
# 使用网格搜索寻找最优超参数
grid_search = GridSearchCV(clf, param_grid=param_grid, cv=5)
grid_search.fit(train_X, train_Y)
# 输出最优超参数组合和对应的准确率
print("Best parameters: {}".format(grid_search.best_params_))
print("Best accuracy: {:.2f}%".format(grid_search.best_score_ * 100))
# 返回最优模型
return grid_search.best_estimator_
# 读取数据
train_inputs, train_labels = read_dataset('train.txt')
test_inputs, test_labels = read_dataset('test.txt')
# 创建数据集对象
dataset = MyDataset()
dataset.set_stopword()
dataset.build_vocab(train_inputs)
# 转换文本数据为向量
train_X = dataset.transform(train_inputs)
test_X = dataset.transform(test_inputs)
# 训练模型
clf = optimize_model(train_X, train_labels)
# 预测测试集
pred_Y = clf.predict(test_X)
# 计算准确率
acc = accuracy_score(test_labels, pred_Y)
print("Test accuracy: {:.2f}%".format(acc * 100))
```
这个示例代码中,我们使用了SVM作为分类器,使用网格搜索方法寻找最优超参数组合,最终输出最优模型的准确率。
在数据预处理阶段,我们使用了jieba进行分词,并通过设定最大词汇量和最小词频等参数,筛选出高频词汇作为词汇表,将文本转换为向量表示。
需要注意的是,这个示例代码并不一定适用于您的具体任务和数据集,您可能需要根据实际情况进行调整和优化。
阅读全文