帮我写一段遗传算法优化代码
时间: 2023-03-31 16:03:33 浏览: 84
好的,我可以为您提供一段遗传算法优化代码。以下是示例代码:
```
#include <iostream>
#include <vector>
#include <algorithm>
#include <random>
using namespace std;
// 定义适应度函数
double fitness(vector<int> &chromosome) {
double sum = ;
for (int i = ; i < chromosome.size(); i++) {
sum += chromosome[i];
}
return sum;
}
// 定义交叉函数
vector<int> crossover(vector<int> &parent1, vector<int> &parent2) {
vector<int> child(parent1.size());
int crossover_point = rand() % parent1.size();
for (int i = ; i < crossover_point; i++) {
child[i] = parent1[i];
}
for (int i = crossover_point; i < parent2.size(); i++) {
child[i] = parent2[i];
}
return child;
}
// 定义变异函数
void mutate(vector<int> &chromosome) {
int mutation_point = rand() % chromosome.size();
chromosome[mutation_point] = rand() % 10;
}
// 定义遗传算法函数
vector<int> genetic_algorithm(int population_size, int num_generations) {
// 初始化种群
vector<vector<int>> population(population_size, vector<int>(10));
for (int i = ; i < population_size; i++) {
for (int j = ; j < 10; j++) {
population[i][j] = rand() % 10;
}
}
// 进化
for (int generation = ; generation < num_generations; generation++) {
// 计算适应度
vector<double> fitness_values(population_size);
for (int i = ; i < population_size; i++) {
fitness_values[i] = fitness(population[i]);
}
// 选择
vector<vector<int>> new_population(population_size, vector<int>(10));
for (int i = ; i < population_size; i++) {
// 选择两个父代
int parent1_index = rand() % population_size;
int parent2_index = rand() % population_size;
while (parent2_index == parent1_index) {
parent2_index = rand() % population_size;
}
vector<int> parent1 = population[parent1_index];
vector<int> parent2 = population[parent2_index];
// 交叉
vector<int> child = crossover(parent1, parent2);
// 变异
mutate(child);
// 将子代加入新种群
new_population[i] = child;
}
// 更新种群
population = new_population;
}
// 返回最优个体
int best_index = max_element(fitness_values.begin(), fitness_values.end()) - fitness_values.begin();
return population[best_index];
}
int main() {
srand(time(NULL));
vector<int> best_chromosome = genetic_algorithm(100, 100);
cout << "最优个体: ";
for (int i = ; i < best_chromosome.size(); i++) {
cout << best_chromosome[i] << " ";
}
cout << endl;
return ;
}
```
希望这段代码能够帮助您实现遗传算法优化。
阅读全文