grad[:, i] = torch.autograd.grad(fs[:, i], x, retain_graph=True)[0] RuntimeError: expand(torch.FloatTensor{[3, 32, 32]}, size=[1]): the number of sizes provided (1) must be greater or equal to the number of dimensions in the tensor (3)什么意思
时间: 2024-03-03 09:51:21 浏览: 224
这个错误意味着在尝试对形状为`[3, 32, 32]`的张量进行扩展时出现了问题。具体来说,PyTorch提供的`expand`操作期望第二个参数是一个形状元组,其中包含要扩展的维度大小。但是,错误消息中显示的形状元组只有一个元素,这是不正确的。
在这种情况下,可能的原因是`grad`张量的形状不正确,因此在进行扩展时出现了错误。请确保`grad`张量的形状是正确的,并且在进行扩展时,提供的形状元组的大小与张量的维度数相同。
您可以通过在代码中添加`print`语句来查看`grad`张量的形状,例如:
```
print(grad.shape)
```
这将打印出`grad`张量的形状,以帮助您找出错误的原因。另外,`retain_graph=True`只在需要多次反向传播时使用,如果只需要计算一次梯度,可以省略该参数。
相关问题
pt_x_bc_var = Variable(torch.from_numpy(x_bc_var).float(), requires_grad=False) pt_x_in_pos_one = Variable(torch.from_numpy(x_in_pos_one).float(), requires_grad=False) pt_x_in_zeros = Variable(torch.from_numpy(x_in_zeros).float(), requires_grad=False) pt_t_in_var = Variable(torch.from_numpy(t_in_var).float(), requires_grad=False) pt_u_in_zeros = Variable(torch.from_numpy(u_in_zeros).float(), requires_grad=False) # 求边界条件的损失 net_bc_right = net(torch.cat([pt_x_in_zeros, pt_t_in_var], 1)) # u(0,t)的输出 mse_u_2 = mse_cost_function(net_bc_right, pt_u_in_zeros) # e = 0-u(0,t) 公式(2) net_bc_left = net(torch.cat([pt_x_in_pos_one, pt_t_in_var], 1)) # u(1,t)的输出 mse_u_3 = mse_cost_function(net_bc_left, pt_u_in_zeros) x_0 = torch.cat([pt_x_in_zeros, pt_t_in_var], 1) x_1 = torch.cat([pt_x_in_pos_one, pt_t_in_var], 1) pt_x_0 = x_0.detach().requires_grad_(True) pt_x_1 = x_1.detach().requires_grad_(True) net_bc_right.requires_grad_(True) net_bc_left.requires_grad_(True) u_x_0 = torch.autograd.grad(net_bc_right, pt_x_0, grad_outputs=torch.ones_like(net_bc_right), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_x_1 = torch.autograd.grad(net_bc_left, pt_x_1, grad_outputs=torch.ones_like(net_bc_left), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_0 = torch.autograd.grad(u_x_0, pt_x_0, grad_outputs=torch.ones_like(u_x_0), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_1 = torch.autograd.grad(u_x_1, pt_x_1, grad_outputs=torch.ones_like(u_x_1), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1)这串代码有什么问题吗?该怎么解决
这段代码没有明显的语法问题,但是有可能会导致梯度计算的错误,因为在计算 u_x_0, u_x_1, u_xx_0, u_xx_1 的时候,使用了 detach() 方法,这会使得计算图中的某些节点与原来的计算图断开,从而导致梯度无法传递到这些节点,进而影响到 u 的梯度计算。为了解决这个问题,可以使用 retain_graph=True 参数来保留计算图,或者在计算 u_x_0, u_x_1, u_xx_0, u_xx_1 的时候不使用 detach() 方法。
def find_preferences_2d(self, *losses): assert len(losses) >= 2 grads = [] for loss in losses: self.optimizer_actor.zero_grad() self.optimizer_critic.zero_grad() grad = torch.autograd.grad(loss, self.model.actor.parameters(), retain_graph=True, create_graph=self.adaptive)[0] torch.nn.utils.clip_grad_norm_(self.model.actor.parameters(), self.max_grad_norm) grad = torch.flatten(grad) grad = torch.squeeze(grad) grads.append(grad) total_grad = grads[1] - grads[0] print("total_grad:",total_grad) nom = torch.dot(total_grad, grads[0]) #相同类型矩阵做点积 den = torch.norm(total_grad) ** 2 eps = nom/(den + self.adam_eps) eps = torch.clamp(eps, 0, 1) pareto_loss = eps*grads[0] + (1-eps)*grads[1] pareto_loss = torch.norm(pareto_loss) ** 2 return [1-eps, eps], pareto_loss
这段代码实现了一个二维偏好查找函数(_preferences_2d)。它接收任意数量损失函数(losses)作为参数,但至少需要两个损失函数首先,代码创建一个空列表grad,用于存储损失函数对模型参数的梯度。
然后,使用一个循环遍历每个损失函数。在每个迭代中,代码先将模型的actor和critic优化器的梯度清零,然后使用torch.autograd.grad函数计算损失函数对actor参数的梯度。其中,retain_graph参数设置为True表示保留计算图以供后续使用,create_graph参数根据self.adaptive的值决定是否创建计算图。接着,代码使用torch.nn.utils.clip_grad_norm_函数对actor参数的梯度进行裁剪,以防止梯度爆炸问题。最后,代码将梯度展平成一维张量,并将其添加到grads列表中。
接下来,代码计算总梯度(total_grad),即第二个损失函数的梯度减去第一个损失函数的梯度。然后,代码使用torch.dot函数计算total_grad和grads[0]之间的点积(内积)。接着,代码计算total_grad的范数的平方,并将其保存在den变量中。
接下来,代码计算一个比例系数eps,用于加权求和grads[0]和grads[1]以得到pareto_loss。eps的计算公式为eps = nom / (den + self.adam_eps),其中nom是total_grad和grads[0]的点积,self.adam_eps是一个小的常数,用于避免除零错误。然后,代码使用torch.clamp函数将eps限制在0和1之间。
最后,代码计算pareto_loss,即eps乘以grads[0]加上(1-eps)乘以grads[1]的范数的平方。
函数返回一个长度为2的列表,其中第一个元素是[1-eps, eps],第二个元素是pareto_loss。
总体而言,这段代码是用于在二维空间中查找偏好的函数。它通过计算损失函数的梯度差异和权重系数来确定最佳的权衡解。
阅读全文