df = pd.read_csv(label_csv) df = df[df['fold'].isin(folds)]解读
时间: 2024-05-28 07:15:01 浏览: 123
这是一段Python代码,目的是读取一个CSV文件(label_csv)中的数据并筛选出指定的数据集(folds)。具体分为以下两步骤:
1. 使用pandas库中的read_csv函数,将CSV文件中的数据读取并转化为DataFrame对象,存储在变量df中。
2. 使用DataFrame对象的isin方法,筛选出fold属性值属于指定数据集范围内的数据,重新赋值给df。
相关问题
请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)
这段代码的作用是生成一个提交文件(submission.csv),其中包含了对一组测试数据进行预测的结果。下面是每一句代码的详细注解:
```
sub['t'] = 0
```
在这一行代码中,创建了一个名为sub的pandas DataFrame对象,并且给其增加了一个名为t的列,初始值为0。
```
submission = []
```
这一行代码创建一个空列表submission。
```
for f in test:
df = pd.read_csv(f)
df.set_index('Time', drop=True, inplace=True)
df['Id'] = f.split('/')[-1].split('.')[0]
df = df.fillna(0).reset_index(drop=True)
df['Time_frac']=(df.index/df.index.max()).values
df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1)
df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1)
df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1)
```
这一段代码是对测试数据进行预处理,包括读取CSV文件、设置索引、填充缺失值、添加新的列、合并多个数据框等。
```
df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin")
df = df.merge(df_feats, how="left", left_index=True, right_index=True)
df.fillna(method="ffill", inplace=True)
```
这里是调用了fc.calculate函数,对测试数据进行特征提取,并将结果合并到原始数据框df中。
```
res_vals=[]
for i_fold in range(N_FOLDS):
res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3)
res_vals.append(np.expand_dims(res_val,axis=2))
res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2)
res = pd.DataFrame(res_vals, columns=pcols)
```
这一段代码是对测试数据进行预测,包括调用预训练的模型在测试数据上进行预测,并将结果保存在一个名为res的pandas DataFrame对象中。
```
df = pd.concat([df,res], axis=1)
df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str)
submission.append(df[scols])
```
这里将预测结果与测试数据框合并,并且将Id列和索引列组合成一个新的Id列,最后将预测结果保存到submission列表中。
```
submission = pd.concat(submission)
submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0)
submission[scols].to_csv('submission.csv', index=False)
```
这里将所有测试数据的预测结果合并成一个pandas DataFrame对象,再与之前创建的sub对象合并,最后将最终的预测结果保存到submission.csv文件中。
import requests import json import pandas as pd import numpy as np def jd(url): id = url.replace('https://item.jd.com/', '').replace('.html', '') params = { 'callback': 'fetchJSON_comment98', 'productId': id, 'score': 0, 'sortType': 5, 'page': 0, 'pageSize': 10, 'isShadowSku': 0, 'fold': 1, } url = 'http://club.jd.com/comment/productPageComments.action' res = requests.get(url, params=params) json_str = res.text[20:-2] info_dic = json.loads(json_str) goodRate = info_dic.get('productCommentSummary').get('goodRate') poorRate = info_dic.get('productCommentSummary').get('poorRate') return goodRate, poorRate if __name__ == '__main__': path = "data/京东-运动鞋-处理后.csv" df = pd.read_csv(path) for i, row in df.iterrows(): df.loc[i, 'goods_goodRate'], df.loc[i, 'goods_poorRate'] = jd(row['goods_url']) df.to_csv(path, index=False, encoding='utf-8-sig')
这是一个Python程序,用于爬取京东商品的好评率和差评率。程序首先导入了必要的库,包括requests,json,pandas和numpy。然后定义了一个名为jd的函数,这个函数的作用是从京东网站上获取商品的好评率和差评率。函数的输入参数为一个商品链接url,函数内部将url解析成商品id,并以此构造请求参数params,然后使用requests库向京东服务器发送请求并获取响应结果。响应结果是一个JSON格式的字符串,需要使用json库将其解析成Python字典类型。从字典中获取商品的好评率和差评率,并将其返回给调用者。程序的主函数首先读取一个CSV文件,该文件包含了多个商品的信息,包括商品名称、商品链接等。然后使用Pandas库的iterrows方法遍历每一行商品信息,调用jd函数获取商品的好评率和差评率,并将这些信息保存回原CSV文件中。最后将CSV文件保存到磁盘上。
阅读全文