dst = cv2.warpPerspective(image,M,(999,477))
时间: 2023-10-06 10:05:21 浏览: 100
这段代码使用了 OpenCV 的 `warpPerspective()` 函数来对图像进行透视变换。其中,`image` 是输入图像,`M` 是变换矩阵,`(999, 477)` 是输出图像的大小。
在透视变换中,我们需要指定四个点,这四个点在输入图像中构成了一个矩形,而这个矩形会被变换为输出图像中的一个平行四边形。`M` 就是这个变换矩阵,它是通过 `cv2.getPerspectiveTransform()` 函数计算出来的。你需要将输入图像中的四个点和输出图像中对应的四个点作为参数传递给 `cv2.getPerspectiveTransform()` 函数,它会返回一个 $3 \times 3$ 的变换矩阵,然后将这个矩阵作为参数传递给 `cv2.warpPerspective()` 函数即可完成透视变换。
需要注意的是,`cv2.warpPerspective()` 函数在进行图像变换时,会将输出图像中的每个像素点都映射到输入图像中的某个像素点上。如果输出图像中的某个像素点没有对应的输入图像中的像素点,那么这个像素点就会被设为黑色。因此,在进行透视变换时,你需要确保输出图像中的每个像素点都有对应的输入图像中的像素点。
相关问题
import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图
import cv2
import numpy as np
# 读取两幅待处理的图像
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)
# 对图像进行高斯模糊
img1 = cv2.GaussianBlur(img1, (5, 5), 0)
img2 = cv2.GaussianBlur(img2, (5, 5), 0)
# 使用Shi-Tomasi算法检测特征点
corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10)
corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10)
# 对特征点进行亚像素定位
corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
# 对特征点进行匹配
sift = cv2.xfeatures2d.SIFT_create()
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
kps1, descs1 = sift.detectAndCompute(img1, None)
kps2, descs2 = sift.detectAndCompute(img2, None)
matches = matcher.match(descs1, descs2)
# 使用RANSAC算法进行匹配点筛选
src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 画出特征点连线图
matchesMask = mask.ravel().tolist()
h, w = img1.shape
draw_params = dict(matchColor=(0, 255, 0), singlePointColor=None, matchesMask=matchesMask, flags=2)
img3 = cv2.drawMatches(img1, kps1, img2, kps2, matches, None, **draw_params)
cv2.imshow('Feature Matching', img3)
# 对图像进行配准和拼接
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 显示结果
cv2.imshow('Result', result)
cv2.waitKey()
cv2.destroyAllWindows()
改进这段代码,使其输出匹配点连线图并对图像进行拼接输出全景图:import cv2 # 读入需要配准的两张图像 img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') # 将图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 使用 Shi-Tomasi 算法寻找关键点并计算特征描述子 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(gray1, None) kp2, des2 = sift.detectAndCompute(gray2, None) # 使用 FLANN 匹配器进行特征匹配 FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # 选择好的匹配点 good = [] for m, n in matches: if m.distance < 0.7 * n.distance: good.append(m) # 获取匹配点对应的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) # 使用 RANSAC 算法进行配准 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对第一张图像进行变换并输出结果 result = cv2.warpPerspective(img1, M, (img1.shape[1], img1.shape[0])) cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows()
import cv2
import numpy as np
# 读入需要配准的两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 将图像转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 使用 Shi-Tomasi 算法寻找关键点并计算特征描述子
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 使用 FLANN 匹配器进行特征匹配
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 选择好的匹配点
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 获取匹配点对应的坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# 使用 RANSAC 算法进行配准
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 对第一张图像进行变换并输出结果
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
# 将第二张图像拼接到全景图中
result[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]] = img2
# 输出全景图
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
阅读全文