Learning to Quantify的pytorch代码
时间: 2024-01-21 15:08:28 浏览: 112
pytorch学习代码
以下是使用PyTorch实现Learning to Quantify的代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
class Quantifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Quantifier, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = torch.sigmoid(out)
return out
def train(model, train_loader, num_epochs, learning_rate):
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
def test(model, test_loader):
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
predicted = torch.round(output)
total += target.size(0)
correct += (predicted == target).sum().item()
print('Accuracy of the model on the test set: {:.2f}%'.format(100 * correct / total))
if __name__ == '__main__':
input_dim = 784
hidden_dim = 100
output_dim = 1
num_epochs = 10
learning_rate = 0.001
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)
model = Quantifier(input_dim, hidden_dim, output_dim)
train(model, train_loader, num_epochs, learning_rate)
test(model, test_loader)
```
在这个例子中,我们使用了MNIST数据集来训练一个“量化器”模型。该模型使用一个简单的两层神经网络,其中包含一个隐藏层和一个输出层(使用Sigmoid作为激活函数),用于将输入图像映射到一个0到1之间的输出值。我们使用均方误差作为损失函数,并使用Adam优化器进行反向传播和权重更新。在训练过程中,我们输出每个时期的损失,并在测试集上评估模型的准确性。
阅读全文