abline(v=df.mean$date[c(18,27)],lty=2)

时间: 2024-04-22 13:22:00 浏览: 22
这是一段 R 代码,使用了 abline() 函数在图形中添加垂直线。该函数的第一个参数是指定添加的线的类型,"v" 表示垂直线。第二个参数是一个向量,表示要在哪些位置添加垂直线。代码中使用了 df.mean$date[c(18,27)] 来指定要添加垂直线的位置,其中 c(18,27) 表示第 18 和第 27 个位置。其他参数包括线型(lty),这里使用了虚线,lty=2。
相关问题

predlines <- c(1:10) plty <- c(2:11) pcol <- c(2:11) matlines(df.mean$date,df.mean[,3+predlines], lty=1,col=1,lwd = 3) matlines(df.pred$date,df.pred[,3+predlines], lty=plty,col=pcol,lwd = 2) abline(v=df.mean$date[c(18,27)],lty=2)

这段代码是在 R 语言中进行的数据可视化操作。首先,通过 c(1:10)、c(2:11) 和 c(2:11) 创建了三个向量 predlines、plty 和 pcol,分别包含了整数 1 到 10、整数 2 到 11 和整数 2 到 11。 接着,使用 matlines() 函数绘制了两条曲线,分别是 df.mean$date 和 df.mean[,3+predlines] 的曲线,以及 df.pred$date 和 df.pred[,3+predlines] 的曲线。其中,第一条曲线设置了线型 lty=1、颜色 col=1、线宽 lwd=3,而第二条曲线则根据向量 plty 和 pcol 分别设置了线型和颜色。 最后,使用 abline() 函数在图表中绘制了两条垂直于 x 轴的虚线,位置分别为 df.mean$date[c(18, 27)]。

plotJL <- function(city="JL") { x_label <- seq(from=as.Date("2022/2/25"),to=as.Date("2022/5/25"),by=7) pfile=paste0("Fig_",city,".png") png(pfile,width = 500*6,height = 500*4) par( mfrow=c(2,2),mar=c(5,5,5,1)*3 ) plot(df.pred$date,df.pred$dI,pch='x',xaxt='n', xlab="Date",ylab="Daily Confirmed" ,cex.lab=3,cex.axis = 2, cex=3) axis(1,x_label,format(x_label,"%m-%d"),las=1,cex.axis=2) title(main = "A",cex.main=3) predlines <- c(1:10) plty <- c(2:11) pcol <- c(2:11) matlines(df.mean$date,df.mean[,3+predlines], lty=1,col=1,lwd = 3) matlines(df.pred$date,df.pred[,3+predlines], lty=plty,col=pcol,lwd = 2) abline(v=df.mean$date[c(18,27)],lty=2) legend("topright",paste("Predicted on",df.pred$date[(18:50)][predlines]), lty=plty,col=pcol,cex = 3,lwd=2 ) plot(df.pred$date,df.pred$dI,pch='x',xaxt='n', xlab="Date",ylab="Daily Confirmed" ,cex.lab=3,cex.axis = 2, cex=3) axis(1,x_label,format(x_label,"%m-%d"),cex.axis=2) title(main = "B",cex.main=3) predlines <- c(11:18) plty <- c(2:9) pcol <- c(2:9) matlines(df.mean$date,df.mean[,3+predlines], lty=1,col=1,lwd = 3) matlines(df.pred$date,df.pred[,3+predlines], lty=plty,col=pcol,lwd = 2) abline(v=df.mean$date[c(28,35)],lty=2) legend("topright",paste("Predicted on",df.pred$date[(18:50)][predlines]), lty=plty,col=pcol,cex = 3,lwd=2 ) plot(df.pred$date,df.pred$dI,pch='x',xaxt='n', xlab="Date",ylab="Daily Confirmed" ,cex.lab=3,cex.axis = 2, cex=3) axis(1,x_label,format(x_label,"%m-%d"),cex.axis=2) title(main = "C",cex.main=3) predlines <- c(19:26) plty <- c(2:9) pcol <- c(2:9) matlines(df.mean$date,df.mean[,3+predlines], lty=1,col=1,lwd = 3) matlines(df.pred$date,df.pred[,3+predlines], lty=plty,col=pcol,lwd = 2) abline(v=df.mean$date[c(36,43)],lty=2) legend("topright",paste("Predicted on",df.pred$date[(18:50)][predlines]), lty=plty,col=pcol,cex = 3,lwd=2 ) plot(df.pred$date,df.pred$dI,pch='x',xaxt='n', xlab="Date",ylab="Daily Confirmed" ,cex.lab=3,cex.axis = 2, cex=3) axis(1,x_label,format(x_label,"%m-%d"),cex.axis=2) title(main = "D",cex.main=3) predlines <- c(27:33) plty <- c(2:8) pcol <- c(2:8) matlines(df.mean$date,df.mean[,3+predlines], lty=1,col=1,lwd = 3) matlines(df.pred$date,df.pred[,3+predlines], lty=plty,col=pcol,lwd = 2) abline(v=df.mean$date[c(44,50)],lty=2) legend("topright",paste("Predicted on",df.pred$date[(18:50)][predlines]), lty=plty,col=pcol,cex = 3,lwd=2 ) dev.off() }

这段代码是用于绘制四个子图的函数,每个子图都是基于来自数据框 df.pred 和 df.mean 的数据绘制的。每个子图都有一个标题(A,B,C,D),并且包含了预测线和实际线。其中预测线是基于预测数据绘制的,实际线是基于实际数据绘制的。每个子图的预测线都有一个图例,用于说明预测线是基于哪个日期的数据绘制的。这些图形将被保存在文件名为 "Fig_JL.png" 的 PNG 文件中。

相关推荐

在运行以下R代码时:# 分别绘制三组岭回归的图 # 绘制第一组交叉验证误差图 ggplot(data = data.frame(lambda = cv1$glmnet.fit$lambda, cvm = cv1$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for First Model") # 绘制第一组预测误差图 yhat1 <- predict(ridge1, s = cv1$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat1), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for First Model") # 绘制第二组交叉验证误差图 ggplot(data = data.frame(lambda = cv2$glmnet.fit$lambda, cvm = cv2$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for Second Model") # 绘制第二组预测误差图 yhat2 <- predict(ridge2, s = cv2$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat2), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for Second Model") # 绘制第三组交叉验证误差图 ggplot(data = data.frame(lambda = cv3$glmnet.fit$lambda, cvm = cv3$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for Third Model") # 绘制第三组预测误差图 yhat3 <- predict(ridge3, s = cv3$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat3), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for Third Model")。发生以下错误:Error in data.frame(lambda = cv1$glmnet.fit$lambda, cvm = cv1$glmnet.fit$cvm) : 参数值意味着不同的行数: 100, 0。请对原代码进行修正

以下R代码:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 y = X1 + 2X2 + 3X3 + e, y = X11 + 2X22 + 3X33 + e, y = X21 + 2X22 + 3X23 + e beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %% beta3 + rnorm(n) # 线性回归中分别计算三组的CV值 cv1 <- cv.glmnet(X, y1, alpha = 0) cv2 <- cv.glmnet(X, y2, alpha = 0) cv3 <- cv.glmnet(X, y3, alpha = 0) # 岭回归中计算三组的CV值并画图 ridge1 <- glmnet(X, y1, alpha = 0) ridge2 <- glmnet(X, y2, alpha = 0) ridge3 <- glmnet(X, y3, alpha = 0) # 分别绘制三组岭回归的图 # 绘制第一组交叉验证误差图 ggplot(data = data.frame(lambda = cv1$glmnet.fit$lambda, cvm = cv1$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for First Model") # 绘制第一组预测误差图 yhat1 <- predict(ridge1, s = cv1$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat1), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for First Model") # 绘制第二组交叉验证误差图 ggplot(data = data.frame(lambda = cv2$glmnet.fit$lambda, cvm = cv2$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for Second Model") # 绘制第二组预测误差图 yhat2 <- predict(ridge2, s = cv2$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat2), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for Second Model") # 绘制第三组交叉验证误差图 ggplot(data = data.frame(lambda = cv3$glmnet.fit$lambda, cvm = cv3$glmnet.fit$cvm), aes(x = log(lambda), y = cvm)) + geom_line() + scale_x_reverse() + labs(title = "Cross-validation Error Plot for Third Model") # 绘制第三组预测误差图 yhat3 <- predict(ridge3, s = cv3$glmnet.fit$lambda.1se, newx = X) ggplot(data.frame(y = y, yhat = yhat3), aes(x = y, y = yhat)) + geom_abline() + geom_point() + labs(title = "Predicted vs. Actual Plot for Third Model")。问题出现在第一组交叉验证误差图的代码中,具体是在 data.frame(lambda = cv1$glmnet.fit$lambda, cvm = cv1$glmnet.fit$cvm) 这一行。可以看到,cv1$glmnet.fit$cvm 的值为空。所以请对原代码进行修正

set.seed(0) n = 50 p = 30 x = matrix(rnorm(n*p),nrow=n) bstar = c(runif(30,0.5,1)) mu = as.numeric(x%*%bstar) par(mar=c(4.5,4.5,0.5,0.5)) hist(bstar,breaks=30,col="gray",main="", xlab="True coefficients") library(MASS) set.seed(1) R = 100 nlam = 60 lam = seq(0,25,length=nlam) fit.ls = matrix(0,R,n) fit.rid = array(0,dim=c(R,nlam,n)) err.ls = numeric(R) err.rid = matrix(0,R,nlam) for (i in 1:R) { cat(c(i,", ")) y = mu + rnorm(n) ynew = mu + rnorm(n) a = lm(y~x+0) bls = coef(a) fit.ls[i,] = x%*%bls err.ls[i] = mean((ynew-fit.ls[i,])^2) aa = lm.ridge(y~x+0,lambda=lam) brid = coef(aa) fit.rid[i,,] = brid%*%t(x) err.rid[i,] = rowMeans(scale(fit.rid[i,,],center=ynew,scale=F)^2) } aveerr.ls = mean(err.ls) aveerr.rid = colMeans(err.rid) bias.ls = sum((colMeans(fit.ls)-mu)^2)/n var.ls = sum(apply(fit.ls,2,var))/n bias.rid = rowSums(scale(apply(fit.rid,2:3,mean),center=mu,scale=F)^2)/n var.rid = rowSums(apply(fit.rid,2:3,var))/n mse.ls = bias.ls + var.ls mse.rid = bias.rid + var.rid prederr.ls = mse.ls + 1 prederr.rid = mse.rid + 1 bias.ls var.ls p/n prederr.ls aveerr.ls cbind(prederr.rid,aveerr.rid) par(mar=c(4.5,4.5,0.5,0.5)) plot(lam,prederr.rid,type="l", xlab="Amount of shrinkage",ylab="Prediction error") abline(h=prederr.ls,lty=2) text(c(1,24),c(1.48,1.48),c("Low","High")) legend("topleft",lty=c(2,1), legend=c("Linear regression","Ridge regression")) par(mar=c(4.5,4.5,0.5,0.5)) plot(lam,mse.rid,type="l",ylim=c(0,max(mse.rid)), xlab=expression(paste(lambda)),ylab="") lines(lam,bias.rid,col="red") lines(lam,var.rid,col="blue") abline(h=mse.ls,lty=2) legend("bottomright",lty=c(2,1,1,1), legend=c("Linear MSE","Ridge MSE","Ridge Bias^2","Ridge Var"), col=c("black","black","red","blue")) 为每句代码加上注释解释

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型