Train.as_matrix()
时间: 2024-05-30 15:16:28 浏览: 101
As an AI language model, I don't have access to the context of this code snippet. However, I can provide you with some general information about the method `as_matrix()`.
The `as_matrix()` method is a deprecated method of the Pandas library. It was used to convert a DataFrame into a NumPy array. The method has been removed in the latest version of Pandas, and users are recommended to use `to_numpy()` instead.
If this code snippet was written in an older version of Pandas, the `Train.as_matrix()` would have returned a NumPy array containing the data of the `Train` DataFrame.
相关问题
from sklearn.naive_bayes import BernoulliNB,MultinomialNB from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split import pandas as pd path = 'E:/Python_file/zuoye/SMSSpamCollection.txt' Cnames=['labels','messages'] data = pd.read_csv(path,sep='\t', header=None, names=Cnames) #读取数据集,分隔符是\t data=data.replace({'ham':0,'spam':1}) #替换标签值 print('数据集展示:') print(data) print('\n----------------------------------\n') X=data['messages'] y=data['labels'] x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.8,random_state=123) vector_nomial=CountVectorizer() #实现词袋模型 vector_bernou=CountVectorizer() #多项式模型分类垃圾短信 train_matrix=vector_nomial.fit_transform(x_train) test_matrix=vector_nomial.transform(x_test) polynomial=MultinomialNB() clm_nomial=polynomial.fit(train_matrix,y_train) result_nomial=clm_nomial.predict(test_matrix) #伯努利模型分类垃圾短信 train_matrix=vector_bernou.fit_transform(x_train) test_matrix=vector_bernou.transform(x_test) Bernoulli=BernoulliNB() clm_bernoulli=Bernoulli.fit(train_matrix,y_train) result_bernou=clm_bernoulli.predict(test_matrix) print('多项式模型的预测结果,类型,长度:') print(result_nomial,type(result_nomial),result_nomial.shape) print('多项式模型的前一百个预测结果:') print(result_nomial[0:100]) print('多项式模型模型R²评分:'+ str(clm_nomial.score(test_matrix,y_test))) print('\n----------------------------------\n') print('伯努利模型的预测结果,类型,长度:') print(result_bernou,type(result_bernou),result_bernou.shape) print('伯努利模型的前一百个预测结果:') print(result_bernou[0:100]) print('伯努利模型R²评分:'+ str(clm_bernoulli.score(test_matrix,y_test)))
这段代码是一个简单的垃圾短信分类器的实现。具体来说,它使用了朴素贝叶斯算法中的多项式模型和伯努利模型来分类短信为垃圾短信或非垃圾短信。以下是代码的详细解释:
1. 导入必要的库和模块:
```python
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
```
2. 读取数据集,并将标签值替换为0或1:
```python
path = 'E:/Python_file/zuoye/SMSSpamCollection.txt'
Cnames=['labels','messages']
data = pd.read_csv(path, sep='\t', header=None, names=Cnames)
data = data.replace({'ham':0, 'spam':1})
```
3. 划分训练集和测试集:
```python
X = data['messages']
y = data['labels']
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=123)
```
4. 实现词袋模型和多项式模型:
```python
vector_nomial = CountVectorizer() # 实现词袋模型
vector_bernou = CountVectorizer() # 多项式模型
```
5. 使用多项式模型分类垃圾短信:
```python
train_matrix = vector_nomial.fit_transform(x_train)
test_matrix = vector_nomial.transform(x_test)
polynomial = MultinomialNB()
clm_nomial = polynomial.fit(train_matrix, y_train)
result_nomial = clm_nomial.predict(test_matrix)
```
6. 使用伯努利模型分类垃圾短信:
```python
train_matrix = vector_bernou.fit_transform(x_train)
test_matrix = vector_bernou.transform(x_test)
Bernoulli = BernoulliNB()
clm_bernoulli = Bernoulli.fit(train_matrix, y_train)
result_bernou = clm_bernoulli.predict(test_matrix)
```
7. 输出结果:
```python
print('多项式模型的预测结果,类型,长度:')
print(result_nomial, type(result_nomial), result_nomial.shape)
print('多项式模型的前一百个预测结果:')
print(result_nomial[0:100])
print('多项式模型模型R²评分:'+ str(clm_nomial.score(test_matrix, y_test)))
print('\n----------------------------------\n')
print('伯努利模型的预测结果,类型,长度:')
print(result_bernou, type(result_bernou), result_bernou.shape)
print('伯努利模型的前一百个预测结果:')
print(result_bernou[0:100])
print('伯努利模型R²评分:'+ str(clm_bernoulli.score(test_matrix, y_test)))
```
其中,输出结果包括模型的预测结果、类型、长度、前一百个预测结果以及模型的R²评分。
请指出下列python代码的错误并改正。from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression kf = KFold(n_splits=3) accuracy_rate=[] cm=[] for train_index, test_index in kf.split(data): dataX_train = x[train_index] dataX_test=x[test_index] dataY_train = y[train_index] dataY_test=y[test_index] model = LogisticRegression() model.fit(dataX_train, dataY_train.astype('int')) # print(model.predict(dataX_test)) # print(dataY_test.tolist()) accuracy_rate.append(sum(model.predict(dataX_test)==dataY_test.tolist())/len(dataY_test)) cm.append(confusion_matrix(y_true=dataY_test, y_pred=model.predict(dataX_test)).T)
这段代码缺少了要导入的库和相关数据。需要根据具体情况添加和修改代码。另外,在定义 model 时需要加上缩进。
修改后的代码如下:
```
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
data = np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
x = data[:,0:1]
y = data[:,1]
kf = KFold(n_splits=3)
accuracy_rate=[]
cm=[]
for train_index, test_index in kf.split(data):
dataX_train = x[train_index]
dataX_test = x[test_index]
dataY_train = y[train_index]
dataY_test = y[test_index]
model = LogisticRegression()
model.fit(dataX_train, dataY_train.astype('int'))
```
阅读全文