all_df = pd.merge(all_df, tmp, on='建造年代', how='left')

时间: 2023-06-17 18:06:53 浏览: 152
这段代码使用 Pandas 库中的 merge 函数,将两个 DataFrame 按照 '建造年代' 这一列进行左连接(left join)操作,并将结果存储在 all_df 变量中。其中,all_df 是左表,tmp 是右表。左连接是指将左表中的所有行都保留,而右表中只保留与左表中相同键值的行,如果右表中没有与左表中相同键值的行,则用 NaN 值填充。具体实现过程中,on 参数指定连接的键值列,how 参数指定连接方式。
相关问题

解释下这段代码 第三方商品 __df1 = __temp_df[__temp_df['show_name'] == '第三方商品'] if not __df1.empty: __df1 = __df1.pivot_table(index=['name', 'show_name'], values=['buy_num'], aggfunc=np.sum).reset_index() else: __df1 = __df1[['name', 'show_name', 'buy_num']] # 非第三方商品 __df2 = __temp_df[__temp_df['show_name'] != '第三方商品'] if not __df2.empty: __df2 = __df2.pivot_table(index=['gt_uuid', 'show_name'] ,values=['buy_num'], aggfunc=np.sum).reset_index() __df2 = pd.merge(left=__df2, right=pd.DataFrame(s_gt_rv, columns=['gt_uuid', 'goods_name']), how='left', on='gt_uuid') __df2 = __df2[['goods_name', 'show_name', 'buy_num']] __df2.rename(columns={'goods_name': 'name'}, inplace=True) else: __df2 = __df2[['name', 'show_name', 'buy_num']] __temp_df = pd.concat([__df1, __df2]) del __df1, __df2 __temp_df.rename(columns={'name': 'goods_name', 'show_name': 'gc_name', 'buy_num': 'num'}, inplace=True) __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['goods_list'] = __temp_df.to_dict(orient='records') __temp_df = __temp_df[['gc_name', 'num']] __temp_df = __temp_df.pivot_table(index='gc_name', values='num', aggfunc=np.sum).reset_index() __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['gc_list'] = __temp_df.to_dict(orient='records') del __temp_df

这段代码是对一个名为 `__temp_df` 的数据框进行处理,并将处理结果存储在 `return_data` 字典的 `goods` 键下。 首先,根据条件 `__temp_df['show_name'] == '第三方商品'`,筛选出满足条件的行,存储在 `__df1` 中。如果 `__df1` 不为空,则对其进行数据透视操作,按照 `name` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。否则,保留 `__df1` 的 `name`、`show_name` 和 `buy_num` 列。 接着,根据条件 `__temp_df['show_name'] != '第三方商品'`,筛选出满足条件的行,存储在 `__df2` 中。如果 `__df2` 不为空,则对其进行数据透视操作,按照 `gt_uuid` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。然后,将 `__df2` 与一个包含列名为 `['gt_uuid', 'goods_name']` 的 DataFrame 进行左连接,并将结果存储在 `__df2` 中。最后,保留 `__df2` 的 `goods_name`、`show_name` 和 `buy_num` 列,并将列名 `goods_name` 改为 `name`。 接下来,通过合并 `__df1` 和 `__df2` 构成新的数据框 `__temp_df`。之后,删除 `__df1` 和 `__df2` 变量。 然后,对 `__temp_df` 进行列名的重命名,将 `name` 改为 `goods_name`,`show_name` 改为 `gc_name`,`buy_num` 改为 `num`。将 `__temp_df` 按照 `num` 降序排序。 接着,将 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `goods_list` 键下。再次对 `__temp_df` 进行处理,只保留 `gc_name` 和 `num` 两列,并进行数据透视操作,按照 `gc_name` 分组,计算 `num` 的总和,并重置索引。最后,将结果按照 `num` 降序排序。 最后,将处理后的 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `gc_list` 键下。最后,删除 `__temp_df` 变量。

new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")

这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码: ```sql -- 选取需要合并的列名 WITH new_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'new_df' ), old_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'older_df' ), cols AS ( SELECT DISTINCT COLUMN_NAME FROM ( SELECT COLUMN_NAME FROM new_cols UNION ALL SELECT COLUMN_NAME FROM old_cols ) ), -- 对 new_df 填充空缺的列,并添加 "row_priority" 列 new_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority FROM new_df ), new_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM new_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns ) ), -- 对 older_df 填充空缺的列,并添加 "row_priority" 列 old_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority FROM older_df ), old_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM old_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns ) ), -- 合并两个 DataFrame,并去重 merged_df AS ( SELECT * FROM new_df_selected UNION ALL SELECT * FROM old_df_selected ), -- 选取合并后的第一行 final_df AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num FROM merged_df ) SELECT col1, col2, ..., colN FROM final_df WHERE row_num = 1 ``` 这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤: 1. 获取需要合并的列名。 2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。 3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。 4. 选取合并后的第一行,得到最终的去重结果。
阅读全文

相关推荐

if self.config.load_type == "INC": # adhoc hist job do not need to join landing merge table try: landing_merge_df = self.spark.read.format(self.config.destination_file_type). \ load(self.config.destination_data_path) # dataframe for updated records df = df.drop("audit_batch_id", "audit_job_id", "audit_src_sys_name", "audit_created_usr", "audit_updated_usr", "audit_created_tmstmp", "audit_updated_tmstmp") # dataframe for newly inserted records new_insert_df = df.join(landing_merge_df, primary_keys_list, "left_anti") self.logger.info(f"new_insert_df count: {new_insert_df.count()}") new_insert_df = DataSink_with_audit(self.spark).add_audit_columns(new_insert_df, param_dict) update_df = df.alias('l').join(landing_merge_df.alias('lm'), on=primary_keys_list, how="inner") update_df = update_df.select("l.*", "lm.audit_batch_id", "lm.audit_job_id", "lm.audit_src_sys_name", "lm.audit_created_usr", "lm.audit_updated_usr", "lm.audit_created_tmstmp", "lm.audit_updated_tmstmp") self.logger.info(f"update_df count : {update_df.count()}") update_df = DataSink_with_audit(self.spark).update_audit_columns(update_df, param_dict) # dataframe for unchanged records unchanged_df = landing_merge_df.join(df, on=primary_keys_list, how="left_anti") self.logger.info(f"unchanged_records_df count : {unchanged_df.count()}") final_df = new_insert_df.union(update_df).union(unchanged_df) print("final_df count : ", final_df.count()) except AnalysisException as e: if e.desc.startswith('Path does not exist'): self.logger.info('landing merge table not exists. will skip join landing merge') final_df = DataSink_with_audit(self.spark).add_audit_columns(df, param_dict) else: self.logger.error(f'unknown error: {e.desc}') raise e else: final_df = DataSink_with_audit(self.spark).add_audit_columns(df, param_dict) return final_df

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

param = {'num_leaves': 31, 'min_data_in_leaf': 20, 'objective': 'binary', 'learning_rate': 0.06, "boosting": "gbdt", "metric": 'None', "verbosity": -1} trn_data = lgb.Dataset(trn, trn_label) val_data = lgb.Dataset(val, val_label) num_round = 666 # clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100, # early_stopping_rounds=300, feval=win_score_eval) clf = lgb.train(param, trn_data, num_round) # oof_lgb = clf.predict(val, num_iteration=clf.best_iteration) test_lgb = clf.predict(test, num_iteration=clf.best_iteration)thresh_hold = 0.5 oof_test_final = test_lgb >= thresh_hold print(metrics.accuracy_score(test_label, oof_test_final)) print(metrics.confusion_matrix(test_label, oof_test_final)) tp = np.sum(((oof_test_final == 1) & (test_label == 1))) pp = np.sum(oof_test_final == 1) print('accuracy1:%.3f'% (tp/(pp)))test_postive_idx = np.argwhere(oof_test_final == True).reshape(-1) # test_postive_idx = list(range(len(oof_test_final))) test_all_idx = np.argwhere(np.array(test_data_idx)).reshape(-1) stock_info['trade_date_id'] = stock_info['trade_date'].map(date_map) stock_info['trade_date_id'] = stock_info['trade_date_id'] + 1tmp_col = ['ts_code', 'trade_date', 'trade_date_id', 'open', 'high', 'low', 'close', 'ma5', 'ma13', 'ma21', 'label_final', 'name'] stock_info.iloc[test_all_idx[test_postive_idx]] tmp_df = stock_info[tmp_col].iloc[test_all_idx[test_postive_idx]].reset_index() tmp_df['label_prob'] = test_lgb[test_postive_idx] tmp_df['is_limit_up'] = tmp_df['close'] == tmp_df['high'] buy_df = tmp_df[(tmp_df['is_limit_up']==False)].reset_index() buy_df.drop(['index', 'level_0'], axis=1, inplace=True)buy_df['buy_flag'] = 1 stock_info_copy['sell_flag'] = 0tmp_idx = (index_df['trade_date'] == test_date_min+1) close1 = index_df[tmp_idx]['close'].values[0] test_date_max = 20220829 tmp_idx = (index_df['trade_date'] == test_date_max) close2 = index_df[tmp_idx]['close'].values[0]tmp_idx = (stock_info_copy['trade_date'] >= test_date_min) & (stock_info_copy['trade_date'] <= test_date_max) tmp_df = stock_info_copy[tmp_idx].reset_index(drop=True)from imp import reload import Account reload(Account) money_init = 200000 account = Account.Account(money_init, max_hold_period=20, stop_loss_rate=-0.07, stop_profit_rate=0.12) account.BackTest(buy_df, tmp_df, index_df, buy_price='open')tmp_df2 = buy_df[['ts_code', 'trade_date', 'label_prob', 'label_final']] tmp_df2 = tmp_df2.rename(columns={'trade_date':'buy_date'}) tmp_df = account.info tmp_df['buy_date'] = tmp_df['buy_date'].apply(lambda x: int(x)) tmp_df = tmp_df.merge(tmp_df2, on=['ts_code', 'buy_date'], how='left')最终的tmp_df是什么?tmp_df[tmp_df['label_final']==1]又选取了什么股票?

最新推荐

recommend-type

EDR( Endpoint Detection and Response:端点检测和响应)测试数据,这些数据可能来自主流工具 用于学习探索性分析

示例数据说明:这个 JSON 数据结构非常全面且详细地记录了一次与端点检测和响应相关的事件信息,从事件本身的基础情况、涉及的设备、文件、进程到各种描述、时间、风险状态等多方面进行了呈现,多条这样的记录组成的数据集可用于安全分析、威胁追踪、系统监控等众多相关场景。 《DuckDB:JSON数据探索性分析实战教程》博客中使用的数据,地址:https://blog.csdn.net/neweastsun/article/details/144592773?sharetype=blogdetail&sharerId=144592773&sharerefer=PC&sharesource=neweastsun&spm=1011.2480.3001.8118
recommend-type

2024年汽车市场行情及小米首款SUV发布与智驾数据积累

内容概要:本报告分析了2024年汽车市场的行情,包括新能源汽车和传统汽车的销售情况。小米汽车首款SUV小米YU7正式发布,将于2025年上市。头部新势力智驾系统的数据积累迅速,特别是理想和鸿蒙智行等企业。特斯拉计划推出新车型Model Q,定价低于3万美元。小马智行与广汽埃安达成战略合作,共同推动Robotaxi的商业化落地。 适合人群:汽车行业分析师、投资者、汽车爱好者和市场研究人员。 使用场景及目标:帮助了解2024年汽车市场的动态,特别是在新能源汽车、自动驾驶技术和市场合作方面的新进展。为投资者和企业提供决策支持。 其他说明:报告提供了详细的市场数据和趋势分析,有助于评估市场潜力和风险。
recommend-type

Elasticsearch核心改进:实现Translog与索引线程分离

资源摘要信息:"Elasticsearch是一个基于Lucene构建的开源搜索引擎。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开源项目发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。" "Elasticsearch的索引线程是处理索引操作的重要部分,负责处理数据的写入、更新和删除等操作。但是,在处理大量数据和高并发请求时,如果索引线程处理速度过慢,就会导致数据处理的延迟,影响整体性能。因此,Elasticsearch采用了事务日志(translog)机制来提高索引操作的效率和可靠性。" "Elasticsearch的事务日志(translog)是一种持久化存储机制,用于记录所有未被持久化到分片中的索引操作。在发生故障或系统崩溃时,事务日志可以确保所有索引操作不会丢失,保证数据的完整性。每个分片都有自己的事务日志文件。" "在Elasticsearch的早期版本中,事务日志的操作和索引线程的操作是在同一个线程中完成的,这可能会导致性能瓶颈。为了解决这个问题,Elasticsearch将事务日志的操作从索引线程中分离出去,使得索引线程可以专注于数据的索引操作,而事务日志的操作可以独立地进行。这样可以大大提高了Elasticsearch的索引性能。" "但是,事务日志的操作是独立于索引操作的,这就需要保证事务日志的操作不会影响到索引操作的性能。因此,在将事务日志从索引线程分离出去的同时,Elasticsearch也引入了一些优化策略,比如批量写入事务日志,减少磁盘I/O操作,以及优化事务日志的数据结构,提高读写效率等。" "需要注意的是,虽然事务日志的分离可以提高索引操作的性能,但是也会增加系统的复杂度和维护难度。因此,开发者在使用这个功能时,需要充分理解其原理和影响,才能确保系统的稳定运行。" "此外,由于这个功能还处于测试和学习阶段,尚未被广泛应用于生产环境,所以开发者在使用时需要谨慎,避免对生产环境造成影响。" "总的来说,Elasticsearch的事务日志的分离是一个重要的优化,可以大大提升索引操作的性能,但是在使用时也需要充分考虑其带来的影响,才能确保系统的稳定运行。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

病房呼叫系统设计基础:7个关键架构策略让你一步入门

![病房呼叫系统设计基础:7个关键架构策略让你一步入门](https://zektek.com.mx/wp-content/uploads/2021/03/diagram-enfermeria.jpg) # 摘要 本文对病房呼叫系统进行了深入的概述、需求分析、架构设计、功能实现以及实践应用案例的探讨。通过分析系统架构的重要性、设计原则、模块划分和数据流,确保了系统的高效运行和优化。本文进一步探讨了呼叫信号传输技术、显示与反馈机制、系统安全性与可靠性设计,并分析了系统部署环境、安装调试流程和维护升级策略。最后,文章展望了病房呼叫系统的未来发展趋势,包括智能化、技术融合以及法规遵从与伦理考量,并
recommend-type

Selenium如何获取Shadow DOM下的元素属性?

在Selenium中,获取Shadow DOM下的元素属性通常涉及到两步:首先找到元素,然后访问它的属性。由于Shadow DOM元素默认是不可见的(对于非JavaScript开发者),所以我们需要用JavaScript脚本来获取其内容。 下面是一个示例,展示如何通过Selenium的`execute_script`函数获取Shadow DOM元素的属性: ```python from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from sel
recommend-type

分享个人Vim与Git配置文件管理经验

资源摘要信息:"conffiles:我的vim和git配置文件" 在给定的文件信息中,我们可以梳理出一些关键知识点,这些知识点主要涉及到了Vim编辑器和Git版本控制系统,同时涉及到了Linux环境下的一些文件操作知识。 首先,文件标题提到了"conffiles",这通常是指配置文件(configuration files)的缩写。配置文件是软件运行时用于读取用户设置或其他运行参数的文件,它们允许软件按照用户的特定需求进行工作。在本例中,这些配置文件是与Vim编辑器和Git版本控制系统相关的。 Vim是一种流行的文本编辑器,是UNIX系统中vi编辑器的增强版本。Vim不仅支持代码编辑,还支持插件扩展、多种模式(命令模式、插入模式、视觉模式等)和高度可定制化。在这个上下文中,"我的vim"可能指的是使用者为Vim定制的一套配置文件,这些配置文件可能包含键位映射、颜色主题、插件设置、用户界面布局和其他个性化选项。 Git是一个版本控制系统,用于跟踪计算机文件的更改和协作。Git是分布式版本控制,这意味着每个开发者都有一个包含完整项目历史的仓库副本。Git常用于代码的版本控制管理,它允许用户回滚到之前的版本、合并来自不同贡献者的代码,并且有效地管理代码变更。在这个资源中,"git conffiles"可能表示与Git用户相关的配置文件,这可能包括用户凭证、代理设置、别名以及其他一些全局Git配置选项。 描述部分提到了使用者之前使用的编辑器是Vim,但现在转向了Emacs。尽管如此,该用户仍然保留了以前的Vim配置文件。接着,描述中提到了一个安装脚本命令"sh ./.vim/install.sh"。这是一个shell脚本,通常用于自动化安装或配置过程。在这里,这个脚本可能用于创建符号链接(symbolic links),将旧的Vim配置文件链接到当前使用的Emacs配置文件夹中,使用户能够继续使用他们熟悉且习惯的Vim配置。 标签"Vimscript"表明这是一个与Vim脚本相关的资源,Vim脚本是一种专门用于自定义和扩展Vim功能的编程语言。Vimscript可以用于编写宏、自定义函数、插件等。 最后,文件名称列表"conffiles-master"可能表明这个压缩包文件包含了一系列的主配置文件。在Git版本控制的术语中,"master"(现在通常称为"main")分支是项目仓库的默认分支。这暗示了这些配置文件可能是该用户项目的主配置文件,这些配置文件被包含在名为"conffiles-master"的压缩包中。 综上所述,这个资源可能是一个集合了Vim编辑器和Git版本控制系统的个人配置文件的压缩包,附带一个用于符号链接旧Vim配置的安装脚本,它能够帮助用户在转向其他工具时仍然能够使用之前的个性化设置。这个资源对于想要了解如何管理和迁移配置文件的用户具有一定的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Genesis 2000教程】:7个技巧助你精通界面布局与操作

![技术专有名词:Genesis 2000](http://intewellos.com/uploadfiles/2023/03/20230321111815165.png) # 摘要 本文全面介绍了Genesis 2000软件的界面布局基础、操作技巧、视觉效果调整、高级功能应用以及综合案例分析,旨在帮助用户高效利用该软件提升工作效率和设计质量。文章首先从界面元素和布局优化入手,讲述了如何定制面板、工具栏以及管理窗口与视图。接着,探讨了通过快捷键和搜索功能实现的高效导航与搜索技巧。第三章强调了视觉效果与图形、文本处理的重要性,并提供实现高级视觉效果的技巧。第四章详细介绍了插件集成、参数化设计
recommend-type

求出所有100到200以内的偶数,并放在数组中,按照每行5个输出

为了求出100到200之间所有的偶数并将它们放入数组中,然后每行打印5个,你可以按以下步骤操作: 1. 创建一个空数组,用于存储偶数。 2. 使用一个for循环,从100开始,每次增加2,直到达到200(包括200)。 - 对于每个数字,检查它是否是偶数(除以2余数为0)。 - 如果是偶数,则添加到数组中。 3. 当找到一个偶数后,检查数组的长度。如果到达或超过5个元素,就开始一个新的行并清空数组,只保留最后一个偶数。 4. 循环结束后,无论数组是否满5个元素,都需要打印剩余的偶数。 这是一个伪代码示例: ```python array = [] num = 100 whil