A*算法解决8数码问题Python代码
时间: 2023-10-30 22:08:47 浏览: 116
以下是一个基于A*算法的解决8数码问题的Python代码示例:
```python
from queue import PriorityQueue
# 定义8数码问题的初始状态和目标状态
initial_state = [[2, 8, 3], [1, 6, 4], [7, 0, 5]]
goal_state = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
# 定义一个字典来记录每个数字所在的位置
positions = {}
for i in range(3):
for j in range(3):
positions[goal_state[i][j]] = (i, j)
# 定义一个函数来计算当前状态和目标状态之间的曼哈顿距离
def manhattan_distance(state):
distance = 0
for i in range(3):
for j in range(3):
if state[i][j] != 0:
goal_position = positions[state[i][j]]
distance += abs(i - goal_position[0]) + abs(j - goal_position[1])
return distance
# 定义一个函数来检查当前状态是否为目标状态
def is_goal(state):
return state == goal_state
# 定义一个函数来生成当前状态的所有合法子状态
def generate_states(state):
states = []
zero_position = None
for i in range(3):
for j in range(3):
if state[i][j] == 0:
zero_position = (i, j)
break
if zero_position[0] > 0:
new_state = [row[:] for row in state]
new_state[zero_position[0]][zero_position[1]] = new_state[zero_position[0]-1][zero_position[1]]
new_state[zero_position[0]-1][zero_position[1]] = 0
states.append(new_state)
if zero_position[0] < 2:
new_state = [row[:] for row in state]
new_state[zero_position[0]][zero_position[1]] = new_state[zero_position[0]+1][zero_position[1]]
new_state[zero_position[0]+1][zero_position[1]] = 0
states.append(new_state)
if zero_position[1] > 0:
new_state = [row[:] for row in state]
new_state[zero_position[0]][zero_position[1]] = new_state[zero_position[0]][zero_position[1]-1]
new_state[zero_position[0]][zero_position[1]-1] = 0
states.append(new_state)
if zero_position[1] < 2:
new_state = [row[:] for row in state]
new_state[zero_position[0]][zero_position[1]] = new_state[zero_position[0]][zero_position[1]+1]
new_state[zero_position[0]][zero_position[1]+1] = 0
states.append(new_state)
return states
# 定义一个类来表示每个搜索节点
class Node:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
self.g = 0 if parent is None else parent.g + 1
self.h = manhattan_distance(state)
self.f = self.g + self.h
# 定义节点之间的比较方式,用于优先队列的排序
def __lt__(self, other):
return self.f < other.f
# 定义一个函数来解决8数码问题
def solve():
# 初始化起始节点和优先队列
start_node = Node(initial_state)
frontier = PriorityQueue()
frontier.put(start_node)
explored = set()
while not frontier.empty():
# 取出队列中的第一个节点
current_node = frontier.get()
# 检查当前节点是否为目标状态
if is_goal(current_node.state):
path = []
while current_node is not None:
path.append(current_node.state)
current_node = current_node.parent
return path[::-1]
# 将当前节点加入已探索集合
explored.add(tuple(map(tuple, current_node.state)))
# 生成当前节点的所有子节点
for state in generate_states(current_node.state):
# 检查子节点是否已经被探索过
if tuple(map(tuple, state)) not in explored:
# 将子节点加入优先队列
frontier.put(Node(state, current_node))
return None
# 解决8数码问题并输出解路径
path = solve()
for state in path:
print(state)
```
该代码实现了A*算法来搜索8数码问题的解,并输出了解路径。在代码中,我们首先定义了8数码问题的初始状态和目标状态,然后定义了一个字典来记录每个数字所在的位置,以便计算曼哈顿距离。接着定义了几个函数来计算曼哈顿距离、检查当前状态是否为目标状态、生成当前状态的所有合法子状态等。最后,我们定义了一个Node类来表示每个搜索节点,并使用优先队列来实现A*算法的搜索过程。
阅读全文