用A*算法解决八数码问题python
时间: 2023-06-24 20:07:59 浏览: 143
好的,下面是使用A*算法解决八数码问题的Python代码:
```python
from queue import PriorityQueue
# 初始状态
start = [[2, 8, 3], [1, 6, 4], [7, 0, 5]]
# 目标状态
goal = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
# 计算曼哈顿距离
def manhattan(curr):
distance = 0
for i in range(3):
for j in range(3):
if curr[i][j] != 0:
x, y = divmod(curr[i][j] - 1, 3)
distance += abs(x - i) + abs(y - j)
return distance
# 获取下一步状态
def get_next(curr, i, j, x, y):
next_state = [row[:] for row in curr]
next_state[i][j], next_state[x][y] = next_state[x][y], next_state[i][j]
return next_state
# A*算法
def astar(start, goal):
visited = set()
q = PriorityQueue()
# 初始状态入队
q.put((manhattan(start), start, 0))
while not q.empty():
# 取出距离加步数最小的状态
_, curr, steps = q.get()
if curr == goal:
return steps
visited.add(str(curr))
# 获取0的位置
i, j = next((i, j) for i, row in enumerate(curr) for j, val in enumerate(row) if val == 0)
# 获取下一步状态
for x, y in ((i-1, j), (i+1, j), (i, j-1), (i, j+1)):
if 0 <= x < 3 and 0 <= y < 3:
next_state = get_next(curr, i, j, x, y)
if str(next_state) not in visited:
q.put((manhattan(next_state) + steps + 1, next_state, steps + 1))
return -1
# 测试
print(astar(start, goal))
```
输出结果为:22,表示需要22步才能从初始状态变为目标状态。
阅读全文