A*算法解决8数码问题python实现
时间: 2024-11-03 14:20:11 浏览: 39
基于python的A星算法实现8数码问题实验源码+代码详细注释+项目说明+实验结果及总结.7z
5星 · 资源好评率100%
A*搜索算法是一种启发式搜索算法,用于寻找两点之间的最短路径,特别适用于图或网格环境中,如经典的八皇后问题。以下是使用Python实现A*算法解决八数码问题的一个简单版本:
```python
import heapq
def heuristic(a, b):
# 计算两个位置之间的曼哈顿距离
return sum(abs(i - j) for i, j in zip(a, b))
def a_star(start, goal, graph):
frontier = [(0, start)] # 开放列表,初始状态优先级为0
came_from = {} # 记录每个节点的前驱
cost_so_far = {start: 0} # 路径成本从起点开始为0
while frontier:
current = heapq.heappop(frontier)[1] # 取出优先级最低的状态
if current == goal:
break
for neighbor, cost in graph[current].items():
new_cost = cost_so_far[current] + cost # 新的总代价
if neighbor not in cost_so_far or new_cost < cost_so_far[neighbor]:
cost_so_far[neighbor] = new_cost
priority = new_cost + heuristic(neighbor, goal)
heapq.heappush(frontier, (priority, neighbor))
came_from[neighbor] = current # 更新前驱节点
path = [goal]
while goal != start:
goal = came_from[goal]
path.append(goal)
return path[::-1] # 返回从起点到终点的路径
# 八数码问题的邻接矩阵或其他数据结构表示,这里假设已经定义好了
graph = {...}
start_state = [...] # 初始化的棋盘状态
goal_state = [...] # 目标状态
solution = a_star(start_state, goal_state, graph)
print("解决方案:", solution)
阅读全文