) 请阅读下面一段程序: arr = np.arange(6).reshape(1, 2, 3) print(arr.transpose(2, 0, 1)) 执行上述程序后,最终输出的结果为
时间: 2023-09-20 07:04:37 浏览: 256
执行上述程序后,最终输出的结果为:`[[[0 2 4]
[1 3 5]]]`。这是因为 `arr` 是一个三维数组,形状为 `(1, 2, 3)`,表示一个有 1 个元素,每个元素有 2 行 3 列的数组。`transpose(2, 0, 1)` 表示把第3个维度放到第1个维度,第1个维度放到第2个维度,第2个维度放到第3个维度,所以最终输出的结果是 `[[[0 2 4][1 3 5]]]`,表示一个有 1 个元素,每个元素有 3 行 2 列的数组。
相关问题
arr1=np.arange(10).reshape(2,5)和arr2=np.arange(15).reshape(3,5).分别水平和垂直arr1和arr2
首先,让我们了解一下两个数组 `arr1` 和 `arr2` 的形状:
```python
arr1 = np.arange(10).reshape(2, 5)
# 这意味着 arr1 是一个2行5列的二维数组,包含了从0到9的数字。
arr2 = np.arange(15).reshape(3, 5)
# 这表示 arr2 是一个3行5列的二维数组,包含了从0到14的数字。
```
**水平拼接 (Horizontal Concatenation):**
如果想要将这两个数组水平拼接在一起,即增加列数而不是行数,可以使用 `np.hstack()` 函数。例如:
```python
h_concat = np.hstack((arr1, arr2))
# 结果是一个新的数组,第一部分是 arr1 的所有列,第二部分是 arr2 的所有列。
# 如果想保持原始形状不变,可以先检查两个数组的列数是否相等,再进行拼接。
if arr1.shape[1] == arr2.shape[1]:
h_concat = np.concatenate((arr1, arr2), axis=1)
else:
print("列数不匹配,无法直接水平拼接")
程序执行报错ValueError: too many values to unpack (expected 2),im1 = Image.open('skeleton_median.bmp') im2 = Image.open('binary_high.bmp') arr1 = np.array(im1) arr2 = np.array(im2) # 获取矩阵形状 h, w = arr1.shape # 创建坐标矩阵 x, y = np.meshgrid(np.arange(w), np.arange(h)) coords = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1))) # 将两个矩阵合并为一个矩阵 mat = np.hstack((coords, arr1.reshape(-1, 1), arr2.reshape(-1, 1))) # 保存矩阵为txt文件 np.savetxt('mat.txt', mat, fmt='%.2f')
这个错误通常是由于变量数量不匹配导致的。在你的代码中,错误信息提到了在h, w = arr1.shape这一行出现了问题,意味着arr1.shape返回的结果不是一个长度为2的元组。为了解决这个问题,你可以在这一行后添加一个print语句,输出arr1.shape的值,以便检查它是否是一个长度为2的元组。例如:
```python
import numpy as np
from PIL import Image
im1 = Image.open('skeleton_median.bmp')
im2 = Image.open('binary_high.bmp')
arr1 = np.array(im1)
arr2 = np.array(im2)
print(arr1.shape) # 检查arr1的形状
h, w = arr1.shape
x, y = np.meshgrid(np.arange(w), np.arange(h))
coords = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1)))
mat = np.hstack((coords, arr1.reshape(-1, 1), arr2.reshape(-1, 1)))
np.savetxt('mat.txt', mat, fmt='%.2f')
```
如果arr1.shape的值不是一个长度为2的元组,你需要检查图像文件是否正确读取,或者尝试使用其他方法获取图像矩阵的形状。另外,你也可以在报错的行中使用"arr1.shape[0], arr1.shape[1] = arr1.shape"来手动解包arr1.shape,并将其值分别赋给h和w。
阅读全文