小波神经网络预测模型代码
时间: 2023-03-02 15:16:06 浏览: 175
小波神经网络(Wavelet Neural Network,WNN)是一种结合小波分析和人工神经网络的预测模型,可以用于时间序列预测等方面。以下是一个简单的小波神经网络预测模型的Python代码示例:
```
import numpy as np
import pywt
from keras.models import Sequential
from keras.layers import Dense
# 定义小波函数,这里使用 Daubechies 4 小波
wavelet = pywt.Wavelet('db4')
# 小波分解函数
def wavelet_decomposition(data, level):
coeffs = pywt.wavedec(data, wavelet, level=level)
return np.concatenate(coeffs)
# 小波重构函数
def wavelet_reconstruction(coeffs):
return pywt.waverec(coeffs, wavelet)
# 生成训练数据
def generate_data(data, window_size, level):
X, y = [], []
for i in range(len(data)-window_size-1):
window = data[i:i+window_size]
X.append(wavelet_decomposition(window, level))
y.append(data[i+window_size])
return np.array(X), np.array(y)
# 构建小波神经网络模型
def build_model(input_shape):
model = Sequential()
model.add(Dense(32, input_shape=input_shape, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
return model
# 训练模型
def train_model(X_train, y_train, epochs):
input_shape = X_train[0].shape
model = build_model(input_shape)
model.fit(X_train, y_train, epochs=epochs, batch_size=32, verbose=0)
return model
# 预测函数
def predict(model, data, window_size, level):
result = []
for i in range(len(data)-window_size-1):
window = data[i:i+window_size]
X = wavelet_decomposition(window, level)
yhat = model.predict(X.reshape(1, -1))[0][0]
result.append(yhat)
return result
# 示例使用
if __name__ == '__main__':
# 生成示例数据
data = np.sin(np.arange(1000) / 10.0)
# 设置小波分解层数和滑动窗口大小
level = 3
window_size = 32
# 生成训练数据和测试数据
X_train, y_train = generate_data(data[:800], window_size, level)
X_test, y_test = generate_data(data[800:], window_size, level)
# 训练模型
model = train_model(X_train, y_train, epochs=100)
# 预测并计算误差
yhat_test = predict(model, data[800:], window_size, level)
mse = np.mean((yhat_test - y_test) ** 2)
print('MSE:', mse)
```
这是一个简单的小波神经网络预测模型的代码示例,可以根据自己的需求进行修改和优化。
阅读全文