我要在attention_3d_block前加LSTM,如何实现
时间: 2024-04-30 15:21:32 浏览: 151
你可以在 LSTM 后添加一个 3D 注意力块(attention_3d_block),以获得更好的模型表现。实现的方式如下:
```python
from keras.layers import Input, LSTM
from keras.models import Model
from keras.layers.core import Dense, Dropout
from keras.layers.convolutional import Conv3D
from keras.layers.pooling import MaxPooling3D
# 定义输入层
inputs = Input(shape=(timesteps, rows, cols, channels))
# 添加LSTM层,输出尺寸为(None, 128)
lstm_out = LSTM(128, return_sequences=True)(inputs)
# 添加3D卷积层,输出尺寸为(None, 4, 4, 4, 32)
conv3d_out = Conv3D(32, kernel_size=(3, 3, 3), padding='same', activation='relu')(lstm_out)
# 添加3D注意力块,输出尺寸为(None, 4, 4, 4, 32)
attention_out = attention_3d_block(conv3d_out)
# 添加3D池化层,输出尺寸为(None, 2, 2, 2, 32)
pooling_out = MaxPooling3D(pool_size=(2, 2, 2))(attention_out)
# 添加全连接层和dropout层,输出尺寸为(None, 64)
flatten_out = Flatten()(pooling_out)
dense_out = Dense(64, activation='relu')(flatten_out)
dropout_out = Dropout(0.5)(dense_out)
# 添加输出层,输出尺寸为(None, num_classes)
outputs = Dense(num_classes, activation='softmax')(dropout_out)
# 构建模型
model = Model(inputs=inputs, outputs=outputs)
```
在这个模型中,我们先添加一个 LSTM 层,然后接上一个 3D 卷积层,再通过 3D 注意力块和 3D 池化层进行处理。最后,我们添加全连接层和 dropout 层,最终输出层为 softmax 层。注意,这里的 attention_3d_block 是你自己实现的代码。
阅读全文