% 设置信号参数 Fs = 1000; % 采样频率 t = 0:1/Fs:1-1/Fs; % 时间向量 fc = 1000; % 载波频率 fm = 100; % 调制信号频率 Am = 1; % 调制信号幅值 Ac = 2; % 载波幅值 % 生成调制信号和载波信号 m = Am*cos(2*pi*fm*t); % 调制信号 c = Ac*cos(2*pi*fc*t); % 载波信号 % DSB模拟调制 y = m.*c; % DSB模拟调制信号 % DFT数字化解调 Y = fft(y); % 对调制信号进行FFT变换 f = (0:length(Y)-1)*Fs/length(Y); % 频率向量 H = zeros(size(Y)); % 初始化解调函数 H(1:length(H)/2+1) = 1./(2*Ac)*exp(-1j*2*pi*fc*t(1:length(H)/2+1)); % 定义解调函数 z = Y.*H; % DFT数字化解调信号 z = ifft(z); % 对解调信号进行IFFT变换

时间: 2024-04-01 12:35:08 浏览: 17
这段代码实现了DSB模拟调制信号的DFT数字化解调,其过程如下: 1. 设置采样频率、时间向量、载波频率、调制信号频率、调制信号幅值和载波幅值。 2. 生成调制信号和载波信号,然后进行DSB模拟调制,得到DSB模拟调制信号y。 3. 对DSB模拟调制信号y进行FFT变换,得到频域信号Y和对应的频率向量f。 4. 初始化解调函数H,然后对H进行设置,定义解调函数。 5. 将Y和H相乘,得到DFT数字化解调信号z。 6. 对z进行IFFT变换,得到解调信号。 需要注意的是,该代码中的解调函数H是基于理想条件下的DSB解调的数学模型,实际应用中需要根据具体情况进行调整。此外,由于FFT和IFFT计算的是离散傅里叶变换,因此在数字化解调过程中需要对频率进行离散化处理。 以上是该代码的简要解释,如果您有任何疑问,请随时提出。
相关问题

% 生成线性调频信号和主瓣噪声干扰信号 fs = 1000; % 采样率 T = 1; % 信号时长 t = 0:1/fs:T-1/fs; % 时间序列 f0 = 50; % 起始频率 f1 = 200; % 终止频率 x = chirp(t,f0,T,f1); % 线性调频信号 n = 0.5*sin(2*pi*100*t); % 主瓣噪声干扰信号 s = x + n; % 混合信号 % 盲源分离 s_hat = fastica(s); % 使用fastICA算法 % 计算方向图 fc = 100; % 中心频率 N = 1024; % FFT长度 d = 0.5; % 元件间距 theta = -90:0.1:90; % 方向角 w = ones(size(s_hat,1),1); % 权重 S = fft(s_hat,N,2); % FFT P = abs(sum(repmat(w,1,N).*S.*exp(-1j*2*pi*fc*(0:N-1)*d*sin(theta*pi/180)),1)).^2; % beam pattern MATLAB报错显示矩阵维度不一致

根据你提供的代码,我看到主要问题出现在计算方向图的部分。在计算权重w时,你使用了s_hat的行数来创建一个列向量,但是在计算FFT时,你使用了N来计算每个信号的FFT,这会导致FFT结果的维度与权重w不匹配,从而导致矩阵维度不一致的错误。 为了解决这个问题,你可以在计算FFT时使用s_hat的列数来保持维度匹配,即将这行代码: S = fft(s_hat,N,2); % FFT 替换为: S = fft(s_hat,size(s_hat,2),2); % FFT 这样做可以确保FFT结果的维度与权重w相同,从而避免矩阵维度不一致的错误。

分析以下代码% 定义原始信号参数 fs = 1000; % 采样率(Hz) t = 0:1/fs:1; % 时间向量 x = sin(2*pi*6*t) + 0.25*sin(2*pi*80*t); % 原始信号 % 添加随机噪声 noise = 0.1*randn(size(t)); % 随机噪声 x_noisy = x + noise; % 添加噪声后的信号 % 设计FIR滤波器 order = 50; % 滤波器阶数 fc = 10; % 截止频率(Hz) b = fir1(order, fc/(fs/2)); % FIR滤波器系数 % 应用FIR滤波器 y1 = filter(b, 1, x_noisy); % 滤波后的信号 y2 = filtfilt(b,1,x_noisy); % 绘制原始信号、添加噪声后的信号和滤波后的信号 figure; %plot(t, x); %hold on; plot(t, x_noisy); hold on; plot(t, y1,'bo'); hold on; plot(t,y2,'k--'); axis([0,0.4,-2,2]); legend("原始信号","filter","filtflit");

这段代码主要是对一个正弦信号添加随机噪声,然后设计并应用了一个FIR滤波器对信号进行滤波,最后绘制了原始信号、添加噪声后的信号和滤波后的信号的图像。下面是代码的具体分析: 1. 定义原始信号参数:定义采样率为1000Hz,时间向量为0到1秒,步长为1/fs。 2. 生成原始信号:使用sin函数生成一个6Hz和80Hz的正弦信号,并将它们相加得到原始信号x。 3. 添加随机噪声:生成一个标准差为0.1的随机噪声,并将其加到原始信号x上,得到添加噪声后的信号x_noisy。 4. 设计FIR滤波器:指定滤波器的阶数为50,截止频率为10Hz,使用fir1函数设计FIR滤波器,并得到滤波器系数b。 5. 应用FIR滤波器:使用filter函数对添加噪声后的信号x_noisy进行滤波,得到滤波后的信号y1。另外,使用filtfilt函数也对x_noisy进行滤波,得到滤波后的信号y2。 6. 绘制图像:使用plot函数绘制原始信号x、添加噪声后的信号x_noisy、滤波后的信号y1和y2的图像,并使用legend函数添加图例。axis函数用于设定图像的范围。 注:filtfilt函数是进行零相位滤波的函数,可以消除滤波器带来的相位延迟。

相关推荐

将下列代码中的基带8-PSK更换为4-PSK:clear all nsymbol=10000; %每种信噪比下的发送符号数 T=1; %符号周期 fs=100; %每个符号的采样点数 ts=1/fs; %采样时间间隔 t=0:ts:T-ts; %时间向量 fc=10; %载波频率 c=sqrt(2/T)*exp(j*2*pi*fc*t); %载波信号 c1=sqrt(2/T)*cos(2*pi*fc*t); %同相载波 c2=-sqrt(2/T)*sin(2*pi*fc*t); %正交载波 M=8; %8-PSK graycode=[0 1 2 3 6 7 4 5]; %Gray编码规则 EsN0=0:15; %信噪比,Es/N0 snr1=10.^(EsN0/10); %信噪比转换为线性值 msg=randint(1,nsymbol,M); %消息数据 msg1=graycode(msg+1); %Gray映射 msgmod=pskmod(msg1,M).'; %基带8-PSK调制 tx=real(msgmod*c); %载波调制 tx1=reshape(tx.',1,length(msgmod)*length(c)); spow=norm(tx1).^2/nsymbol; %求每个符号的平均功率 for indx=1:length(EsN0) sigma=sqrt(spow/(2*snr1(indx))); %根据符号功率求噪声功率 rx=tx1+sigma*randn(1,length(tx1)); %加入高斯白噪声 rx1=reshape(rx,length(c),length(msgmod)); r1=(c1*rx1)/length(c1); %相关运算 r2=(c2*rx1)/length(c2); r=r1+j*r2; y=pskdemod(r,M); %PSK解调 decmsg=graycode(y+1); [err,ber(indx)]=biterr(msg,decmsg,log2(M)); %误比特率 [err,ser(indx)]=symerr(msg,decmsg); %误符号率 end ser1=2*qfunc(sqrt(2*snr1)*sin(pi/M)); %理论误符号率 ber1=1/log2(M)*ser1; %理论误比特率 semilogy(EsN0,ber,'-ko',EsN0,ser,'-k*',EsN0,ser1,EsN0,ber1,'-k.'); title('8-PSK载波调制信号在AWGN信道下的性能') xlabel('Es/N0');ylabel('误比特率和误符号率') legend('误比特率','误符号率','理论误符号率','理论误比特率')

最新推荐

recommend-type

简易应对方式问卷(Simplified Coping Style Questionnaire).doc

简易应对方式问卷(Simplified Coping Style Questionnaire).doc
recommend-type

【图像去雾】自适应局部中值平滑图像去雾【含Matlab源码 2290期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信