matlab 图像去雾算法,基于matlab的图像去雾算法详细讲解与实现附matlab实现源代码...

时间: 2023-08-23 17:09:20 浏览: 51
图像去雾是一种常见的图像增强技术,主要用于消除图像中的雾霾或雾气,提高图像的清晰度和质量。在这里,我将为您介绍一种基于Matlab的图像去雾算法,并附上Matlab实现源代码。 1. 去雾算法原理 去雾算法的基本原理是通过对图像中的颜色和亮度进行调整,减少雾气对图像的影响。去雾算法通常分为两个步骤:1)估计图像中的雾霾密度;2)根据雾霾密度来消除雾霾。 在本文中,我们将介绍Dark Channel Prior去雾算法,它是一种常见且有效的去雾算法。该算法基于图像的暗通道原理,通过计算图像每个像素点的最小值来估计雾霾密度,并使用该密度来消除雾霾。 2. Dark Channel Prior算法流程 Dark Channel Prior去雾算法主要包括以下步骤: (1)计算每个像素点的暗通道值 (2)估计全局雾霾密度 (3)根据雾霾密度和大气光值来消除雾霾 具体实现方法如下: (1)计算每个像素点的暗通道值 暗通道是指图像中每个像素点在所有颜色通道中的最小值。通过计算每个像素点的暗通道值,我们可以确定这个像素点受到雾霾影响的程度。 (2)估计全局雾霾密度 全局雾霾密度可以通过暗通道值计算得到。我们可以选择一定数量的像素点,并计算它们的暗通道值的平均值来估计全局雾霾密度。 (3)根据雾霾密度和大气光值来消除雾霾 根据估计的雾霾密度和大气光值,我们可以计算每个像素点的透射率,并使用透射率来消除雾霾。 完整的Dark Channel Prior去雾算法实现流程如下: 1. 对输入图像进行预处理,包括图像调整、颜色空间转换等操作。 2. 计算每个像素点的暗通道值,即对每个像素点的RGB值取最小值。 3. 估计全局雾霾密度,即对暗通道图像取前1%的像素点的平均值。 4. 估计大气光值,即对原始图像中具有最高亮度的像素点进行计算。 5. 计算每个像素点的透射率,即根据估计的雾霾密度和大气光值计算。 6. 根据透射率和原始图像计算去雾图像。 3. Matlab实现代码 下面是基于Matlab实现的Dark Channel Prior去雾算法代码: ```matlab function dehazed_img = dark_channel_prior(img, omega, t0) % 参数说明: % img:输入待去雾图像 % omega:透射率权值系数,默认为0.95 % t0:透射率阈值,默认为0.1 % 调整图像大小和颜色空间 img = im2double(imresize(img, 0.25)); img_dark = min(img, [], 3); img_hsv = rgb2hsv(img); % 计算暗通道图像 dark_channel = get_dark_channel(img_dark, 15); % 估计全局雾霾密度 atmospheric_light = get_atmospheric_light(dark_channel, img, omega, t0); % 计算透射率 transmission = get_transmission(img_dark, atmospheric_light, omega, t0); % 计算去雾图像 dehazed_img = zeros(size(img)); for i = 1:3 dehazed_img(:,:,i) = (img(:,:,i) - atmospheric_light(i)) ./ max(transmission, 0.1) + atmospheric_light(i); end % 对去雾图像进行颜色空间转换和大小调整 dehazed_img = hsv2rgb(img_hsv(:,:,1), img_hsv(:,:,2), imresize(transmission, size(img(:,:,1)))) .* (1 - imresize(transmission, size(img))) + dehazed_img; dehazed_img = imresize(dehazed_img, 4); dehazed_img = im2uint8(dehazed_img); % 计算暗通道图像 function dark_channel = get_dark_channel(img, patch_size) img_min = ordfilt2(img, 1, ones(patch_size, patch_size), 'symmetric'); dark_channel = img_min; end % 估计全局雾霾密度 function atmospheric_light = get_atmospheric_light(dark_channel, img, omega, t0) [height, width] = size(dark_channel); num_pixels = height * width; num_sample_pixels = floor(num_pixels * omega); [~, indices] = sort(dark_channel(:), 'descend'); indices = indices(1:num_sample_pixels); atmospheric_light = zeros(3, 1); for i = 1:3 atmospheric_light(i) = max(img(:,:,i)(indices)); end end % 计算透射率 function transmission = get_transmission(img_dark, atmospheric_light, omega, t0) transmission = 1 - omega * min(img_dark ./ atmospheric_light, [], 3); transmission(transmission < t0) = t0; end end ``` 在使用该算法时,您可以调整参数omega和t0来获得更好的效果。通过调整这些参数,您可以平衡去雾效果和处理速度之间的关系。 4. 结论 本文介绍了基于Matlab的Dark Channel Prior去雾算法,该算法可以有效地消除图像中的雾霾,并提高图像的质量和清晰度。通过使用Matlab实现源代码,您可以轻松地应用该算法,并在自己的项目中进行调整和优化。

相关推荐

最新推荐

recommend-type

基于遗传算法的MATLAB16阵元天线的优化.doc

利用Matlab编制一个遗传算法或粒子群算法程序,并实现对间距为半波长均匀直线阵综合,指标如下: 阵元数:16元 副瓣电平: 增益:&gt;11dB 要求撰写设计报告,内容包括:所采用的算法基本原理,目标函数的设计,各个...
recommend-type

(修改)基于LMS算法的MATLAB仿真源程序.doc

基于LMS算法的MATLAB仿真源程序的知识点总结 一、自适应滤波算法概述 自适应滤波算法是一种智能滤波技术,能够实时调整滤波器的参数以适应输入信号的变化。该算法广泛应用于信号处理、图像处理、通信系统等领域。 ...
recommend-type

关于地震波分析的MATLAB课设(含源代码).docx

以下是本文中的源代码: ```matlab load grbx3.txt; % 读取数据序列 Xt = grbx3; % 把数据赋值给变量 Fs = 50; % 设定采样率 dt = 1/Fs; % 计算采样间隔 n = 1:length(Xt); % 序列长度 Nn = length(Xt); % 序列长度 ...
recommend-type

MATLAB图像处理+常用源代码

MATLAB 图像处理常用源代码 本文档提供了 MATLAB 进行图像处理的详细代码,涵盖图像读取、灰度转换、Sobel 算子、图像反转、灰度线性变换、非线性变换、直方图均衡化等多个方面的图像处理技术。 1. 图像读取和灰度...
recommend-type

腐蚀和膨胀的matlab实现

本文将分享一个使用MATLAB实现腐蚀和膨胀的源代码。 一、图像读取和灰度化 首先,我们需要读取一幅图像,并将其转换为灰度图像。我们可以使用MATLAB的imread函数来读取图像,并使用size函数来获取图像的大小。然后...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。