def lmsFunc(xn, dn, M, mu): itr = len(xn) en = np.zeros((itr, 1)) yn = np.zeros((itr,1)) W = np.zeros((M, itr)) for k in range(M, itr): if k==M: x = xn[k-1::-1] else: x = xn[k-1:k-M-1:-1] try: y = np.dot(W[:, k - 2], x) print(y) except: pass en[k-1] = dn[k-1] - y W[:, k-1] = W[:, k - 2] + 2 * mu * en[k-1] * x #yn = np.ones(xn.shape) * np.nan for k in range(M, len(xn) ): if k == M: x = xn[k - 1::-1] else: x = xn[k - 1:k - M - 1:-1] yn[k] = np.dot(W[:, -2], x) return yn, W, en
时间: 2024-02-14 18:35:45 浏览: 74
华为ITR流程:全面优化售后服务 glx.pptx
5星 · 资源好评率100%
这段代码是一个最小均方(LMS)算法的实现,用于自适应滤波。其中,xn是输入信号,dn是期望输出信号,M是滤波器的阶数,mu是步长(也称为学习率)。该算法通过不断调整滤波器的权重,使得输出信号与期望输出信号的误差最小化。具体来说,算法首先初始化滤波器权重为0,然后从第M个样本开始,对于每个样本,根据当前的滤波器权重计算输出信号,计算输出信号与期望输出信号的误差,根据误差更新滤波器权重,使误差最小化。最后,返回输出信号、滤波器权重和误差。
阅读全文