cv2.namedwindow()用法
时间: 2023-06-06 09:06:50 浏览: 174
cv2.namedWindow()是OpenCV中创建窗口的函数,它用于创建一个指定大小的窗口来显示图像。函数的参数包括窗口名称和窗口属性,如窗口大小、是否可调整大小等。通过cv2.imshow()函数将图像显示在创建的窗口中。如果需要使用图像处理函数对图像进行处理并实时观察处理结果,该函数非常有用。
相关问题
import numpy as np import cv2 font= cv2.FONT_HERSHEY_SIMPLEX lower_red=np.array([0,127,128])#红色阈值下界 higher_red=np.array([10,255,255])#红色阈值上界 lower_green=np.array([35,110,106])#绿色阈值下界 higher_green=np.array([77,255,255])#绿色阈值上界 cap=cv2.VideoCapture(0)#打开电脑内置摄像头 cv2.namedWindow("Display_Image", cv2.WINDOW_NORMAL) if(cap.isOpened()): while(True): ret,frame=cap.read()#按帧读取,这是读取一帧 img_hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) mask_red=cv2.inRange(img_hsv,lower_red,higher_red)#可以认为是过滤出红色部分,获得红色的掩膜 mask_green=cv2.inRange(img_hsv,lower_green,higher_green)#获得绿色部分掩膜 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波 mask=cv2.bitwise_or(mask_green,mask_red)#三部分掩膜进行按位或运算 cnts1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnts3, hierarchy3 = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in cnts1: (x,y,w,h)=cv2.boundingRect(cnt)#该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)#将检测到的颜色框起来 cv2.putText(frame,'red',(x,y-5),font,0.7,(0,0,255),2) for cnt in cnts3: (x, y, w, h) = cv2.boundingRect(cnt) # 该函数返回矩阵四个点 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 将检测到的颜色框起来 cv2.putText(frame, 'green', (x, y - 5), font, 0.7, (0,255,0), 2) cv2.imshow('frame',frame) k=cv2.waitKey(20)&0xFF if k ==27: break cv2.waitKey(0) cv2.destroyAllWindows()这段代码为什么打不电脑自带的摄像头
这段代码可能无法打开电脑自带的摄像头的原因有几种可能性:
1. 摄像头权限问题:请确保你的代码运行在有摄像头访问权限的用户下。
2. 摄像头驱动问题:有些摄像头需要特定的驱动程序才能正常工作。请检查你的摄像头是否需要安装相应的驱动程序。
3. 摄像头设备号错误:在`cap=cv2.VideoCapture(0)`这一行中,参数`0`表示默认使用设备号为0的摄像头。如果你的电脑有多个摄像头,可能需要更改该参数来指定正确的摄像头设备号。
如果上述解决方法都无效,可以尝试使用其他相机软件(如Zoom、Skype等)来确认摄像头是否正常工作,并检查是否需要更新摄像头驱动程序。
将这段代码改成自动选取一定数量的点import numpy as np import cv2 # Load image img = cv2.imread("input.jpg") # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect edges edges = cv2.Canny(gray, 100, 200) # Display image with edges cv2.imshow("Image with Edges", edges) # Select edge points using a mouse click points = [] def select_point(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: points.append((x, y)) cv2.namedWindow("Select Points") cv2.setMouseCallback("Select Points", select_point) while True: cv2.imshow("Select Points", img) key = cv2.waitKey(1) if key == ord("q"): break # Generate TSP art and tsplib dataset n = len(points) distances = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2) # Write tsplib dataset with open("output.tsp", "w") as f: f.write("NAME: output\n") f.write("TYPE: TSP\n") f.write("DIMENSION: {}\n".format(n)) f.write("EDGE_WEIGHT_TYPE: EUC_2D\n") f.write("NODE_COORD_SECTION\n") for i in range(n): f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1])) f.write("EOF\n") # Display TSP art tsp_art = np.zeros_like(gray) path = list(range(n)) + [0] for i in range(n): cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1) cv2.imshow("TSP Art", tsp_art) cv2.waitKey(0) cv2.destroyAllWindows()
这里是将代码修改为自动选取一定数量的点的示例代码:
import numpy as np
import cv2
# Load image
img = cv2.imread("input.jpg")
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect edges
edges = cv2.Canny(gray, 100, 200)
# Display image with edges
cv2.imshow("Image with Edges", edges)
# Automatically select edge points using HoughLines method
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100,
minLineLength=50, maxLineGap=10)
points = []
for line in lines:
x1, y1, x2, y2 = line[0]
points.append((x1, y1))
points.append((x2, y2))
# Generate TSP art and tsplib dataset
n = len(points)
distances = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2)
# Write tsplib dataset
with open("output.tsp", "w") as f:
f.write("NAME: output\n")
f.write("TYPE: TSP\n")
f.write("DIMENSION: {}\n".format(n))
f.write("EDGE_WEIGHT_TYPE: EUC_2D\n")
f.write("NODE_COORD_SECTION\n")
for i in range(n):
f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1]))
f.write("EOF\n")
# Display TSP art
tsp_art = np.zeros_like(gray)
path = list(range(n)) + [0]
for i in range(n):
cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1)
cv2.imshow("TSP Art", tsp_art)
cv2.waitKey(0)
cv2.destroyAllWindows()
这个修改后的代码使用 HoughLinesP 方法自动选择边缘点,以代替手动选择点的步骤。
阅读全文