torch.transpose()与 torch.permute()区别
时间: 2023-12-02 20:19:50 浏览: 130
torch.transpose() 和 torch.permute() 都是 PyTorch 中的张量操作函数,用于改变张量的形状和维度顺序,但它们有一些区别。
torch.transpose() 是对张量进行转置操作,可以交换张量的两个维度,比如将一个 2x3 的矩阵转置为 3x2。它可以接受两个参数,第一个参数是要转置的张量,第二个参数是一个元组,表示需要交换的两个维度的索引。例如,torch.transpose(x, (0,1)) 将张量 x 的第一维和第二维交换。
torch.permute() 则是对张量进行轴变换操作,可以通过任意顺序对张量的维度进行重新排列。它可以接受一个参数,即一个维度索引的元组,表示需要对哪些维度进行重新排列。例如,torch.permute(x, (1,0)) 将张量 x 的第一维和第二维交换。
因此,torch.transpose() 只能交换两个维度的位置,而 torch.permute() 可以对任意维度进行重新排列。
相关问题
import torchimport torch.nn as nnclass MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.Wq = nn.Linear(d_model, d_model) self.Wk = nn.Linear(d_model, d_model) self.Wv = nn.Linear(d_model, d_model) self.fc = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V, mask=None): d_k = Q.size(-1) scores = torch.matmul(Q, K.transpose(-1, -2)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32)) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attention = torch.softmax(scores, dim=-1) output = torch.matmul(attention, V) return output, attention def split_heads(self, x, batch_size): x = x.view(batch_size, -1, self.num_heads, self.depth) return x.permute(0, 2, 1, 3) def forward(self, Q, K, V, mask=None): batch_size = Q.size(0) Q = self.Wq(Q) K = self.Wk(K) V = self.Wv(V) Q = self.split_heads(Q, batch_size) K = self.split_heads(K, batch_size) V = self.split_heads(V, batch_size) scaled_attention, attention = self.scaled_dot_product_attention(Q, K, V, mask) scaled_attention = scaled_attention.permute(0, 2, 1, 3).contiguous() scaled_attention = scaled_attention.view(batch_size, -1, self.d_model) output = self.fc(scaled_attention) return output, attention
上述代码是一个用PyTorch实现的多头注意力机制(Multi-Head Attention)的模块,该模块可以被用来构建神经网络模型。它的参数有:
- d_model:表示输入向量的维度,也就是embedding的维度。
- num_heads:表示attention头的数量。
输入的维度是:
- Q, K, V:三个输入张量的维度都为 [batch_size, seq_length, d_model],其中batch_size代表batch的大小,seq_length代表输入序列的长度,d_model代表输入向量的维度。
- mask:一个shape为[batch_size, 1, seq_length, seq_length]的张量,用于掩盖无效的位置,使得在计算注意力矩阵时,注意力矩阵中无效位置对应的权重为0。如果没有无效位置,则可以设置为None。
转化为paddlepaddle2.2.2代码:def safe_invert_gains(image, rgb_gain, red_gain, blue_gain): """Inverts gains while safely handling saturated pixels.""" image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format gains = torch.stack((1.0 / red_gain, torch.tensor([1.0]), 1.0 / blue_gain)) / rgb_gain gains = gains.squeeze() gains = gains[None, None, :] # Prevents dimming of saturated pixels by smoothly masking gains near white. gray = torch.mean(image, dim=-1, keepdim=True) inflection = 0.9 mask = (torch.clamp(gray - inflection, min=0.0) / (1.0 - inflection)) ** 2.0 safe_gains = torch.max(mask + (1.0 - mask) * gains, gains) out = image * safe_gains out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format return out
以下是将上述代码转换为PaddlePaddle 2.2.2的代码:
```
import paddle
import paddle.nn.functional as F
def safe_invert_gains(image, rgb_gain, red_gain, blue_gain):
"""Inverts gains while safely handling saturated pixels."""
image = paddle.transpose(image, perm=[1, 2, 0]) # Permute the image tensor to HxWxC format from CxHxW format
gains = paddle.stack((1.0 / red_gain, paddle.to_tensor([1.0]), 1.0 / blue_gain)) / rgb_gain
gains = paddle.squeeze(gains)
gains = gains.unsqueeze(0).unsqueeze(0) # Prevents dimming of saturated pixels by smoothly masking gains near white.
gray = paddle.mean(image, axis=-1, keepdim=True)
inflection = 0.9
mask = (F.relu(gray - inflection, inplace=True) / (1.0 - inflection)) ** 2.0
safe_gains = paddle.maximum(mask + (1.0 - mask) * gains, gains)
out = image * safe_gains
out = paddle.transpose(out, perm=[2, 0, 1]) # Re-Permute the tensor back to CxHxW format
return out
```
需要注意的是,PaddlePaddle中的API与PyTorch不完全一致,因此需要对代码做一些调整。主要包括:
1. 将torch转换为paddle。
2. 将permute函数转换为transpose函数,并调整参数格式。
3. 将torch.mean函数转换为paddle.mean,并调整参数格式。
4. 将torch.clamp函数转换为F.relu函数,并调整参数格式。
5. 将torch.max函数转换为paddle.maximum函数。
需要注意的是,在PaddlePaddle中,使用inplace=True时需要用F.relu等函数来代替。
阅读全文