def __call__(self, input, index=None): if input is None: raise ValueError("Input cannot be None.") output = self.forward_static(input) if index is None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) one_hot.backward() output = input.grad.cpu().data.numpy() output = output[0, :, :, :] return output 代码中执行output = input.grad.cpu().data.numpy() 时报错'NoneType' object has no attribute 'cpu' 如何解决
时间: 2024-03-03 17:50:49 浏览: 106
这个错误可能是因为`input.grad`是`None`,因此无法使用`cpu()`方法。你可以在调用`backward()`方法之前,检查一下`input.grad`是否为空,或者在函数内部添加一个检查,如下所示:
```python
def __call__(self, input, index=None):
if input is None:
raise ValueError("Input cannot be None.")
output = self.forward_static(input)
if index is None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
one_hot.backward()
if input.grad is None:
raise ValueError("Input gradient cannot be None.")
output = input.grad.cpu().data.numpy()
output = output[0, :, :, :]
return output
```
这样可以确保`input.grad`不为空,从而避免出现该错误。
阅读全文