spi使用dma功能只发送了一部分数据

时间: 2024-05-25 11:14:10 浏览: 16
如果 SPI 使用 DMA 功能只发送了部分数据,可能是以下原因导致的: 1. DMA 配置不正确:请检查 DMA 的配置是否正确,包括 DMA 通道、传输方向、缓冲区地址等参数是否正确设置。 2. 数据长度不正确:请检查发送的数据长度是否正确。如果数据长度不足,可能会导致 DMA 发送不完整。 3. 中断处理不正确:请检查 DMA 中断处理函数是否正确。如果中断处理函数没有正确处理 DMA 传输完成的事件,可能会导致 DMA 发送不完整。 4. 芯片硬件问题:如果以上方法都没有解决问题,那么可能是芯片硬件问题导致的。建议检查芯片手册,确认芯片是否支持 DMA 功能,并且 DMA 的配置是否正确。如果芯片硬件出现故障,建议联系芯片厂商进行维修或更换。
相关问题

使用标准库配置stm32g030 spi1和spi2通过dma发送两个数组的数据

您好,配置STM32G030的SPI1和SPI2通过DMA发送两个数组的数据,可以参考以下步骤: 1. 首先,需要在STM32CubeMX中配置SPI1和SPI2的基本参数,如时钟源、工作模式、数据位数、NSS模式等。 2. 然后,需要配置DMA通道,将SPI发送缓冲区与DMA传输相关联。对于SPI1和SPI2,可以使用不同的DMA通道。 3. 接下来,需要编写代码实现数据发送。在使用DMA发送数据时,需要按照以下步骤进行操作: (1) 配置DMA通道和缓冲区:设置DMA通道的配置参数,包括传输方向、传输数据大小、内存地址和外设地址等。同时设置缓冲区地址。 (2) 启动DMA传输:使能DMA传输,并开启SPI发送中断。 (3) 等待传输完成:在中断服务程序中等待DMA传输完成,并进行相应的处理。 4. 最后,可以根据具体需要进行数据接收和处理等操作。 下面是一个简单的代码示例,以SPI1为例: ```c #include "stm32g0xx_hal.h" #define TX_SIZE 10 // 发送缓冲区大小 uint8_t tx_buf[TX_SIZE] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A}; // 发送缓冲区 /* DMA传输完成回调函数 */ void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) { /* DMA传输完成处理 */ } int main(void) { /* 初始化HAL库 */ HAL_Init(); /* 配置SPI1 */ SPI_HandleTypeDef hspi1; hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; HAL_SPI_Init(&hspi1); /* 配置SPI1 DMA通道 */ DMA_HandleTypeDef hdma_spi1_tx; hdma_spi1_tx.Instance = DMA1_Channel3; hdma_spi1_tx.Init.Request = DMA_REQUEST_2; hdma_spi1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_spi1_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_spi1_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_spi1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_spi1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_spi1_tx.Init.Mode = DMA_NORMAL; hdma_spi1_tx.Init.Priority = DMA_PRIORITY_HIGH; HAL_DMA_Init(&hdma_spi1_tx); /* 将SPI1发送缓冲区与DMA通道相关联 */ __HAL_LINKDMA(&hspi1, hdmatx, hdma_spi1_tx); /* 启动SPI1 DMA传输 */ HAL_SPI_Transmit_DMA(&hspi1, tx_buf, TX_SIZE); while (1) { /* 其他操作 */ } } ``` 关于SPI2和数据接收处理部分的代码,请参考STM32G030的相关文档和参考手册进行详细学习和实现。

stm32f4使用dma方式实现spi通信

STM32F4是一款高性能的ARM Cortex-M4F核心微控制器。它具有强大的DMA(直接内存访问)功能,可以通过DMA方式实现SPI通信。DMA是一种直接从外设(如SPI控制器)到内存的数据传输方式,不需要CPU参与数据传输过程,因此可以提高处理器的效率并减少系统负载。 在STM32F4中,通过配置SPI控制器和DMA控制器来实现DMA方式的SPI通信。具体步骤包括下面几个部分: 1. 配置SPI控制器,在SPI控制器的寄存器中设置工作模式、时钟频率、传输模式等参数。 2. 配置DMA控制器,设置DMA通道的传输方向、传输数据长度、数据地址和目的地址等参数。也可以设置DMA传输完成后触发中断。 3. 启动DMA传输,SPI控制器从外设读取数据并通过DMA传输写入内存或从内存读取数据并通过DMA传输写入外设。 通过以上步骤,可以实现高效、快速的DMA方式SPI通信。当需要发送或接收大量数据时,使用DMA方式可以显著提高系统的数据处理效率,同时减少了CPU的负担,可以让系统更稳定、更可靠。

相关推荐

解释一下这段代码ifdef USE_HANDSHAKE INTP_Init(1 << 0, INTP_RISING); INTP_Start(1 << 0); #endif PORT->PMC7 &= ~(3<<1); // P71, P72 digital function PORT->PM7 &= ~(3<<1); // P71, P72 output mode PORT->P7 |= (3<<1); // P71/LED, P72/LED OFF //======================================================================= // spi MODE 0 Master transmission/reception // Mode 0: CPOL = 0, CPHA = 0; i.e. DAP = 1, CKP = 1 // Mode 1: CPOL = 0, CPHA = 1; i.e. DAP = 0, CKP = 1 // Mode 2: CPOL = 1, CPHA = 0; i.e. DAP = 1, CKP = 0 // Mode 3: CPOL = 1, CPHA = 1; i.e. DAP = 0, CKP = 0 //======================================================================= #ifdef TEST_SPI_MODE_0 SPI_MasterInit(SPI_MODE_0); #ifdef USE_HANDSHAKE /* waiting slave ready */ while(g_intp0Taken == 0); g_intp0Taken = 0; #endif //----------------------------------------------------------------------- // Master Send and Slave Receive //----------------------------------------------------------------------- SPI_MasterSend(mtx_buf, sizeof(mtx_buf)); #ifdef SPI_WITH_DMA SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk; /* Disable SysTick IRQ */ __WFI(); SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; /* Enable SysTick IRQ */ #else while(gp_spi_tx_address != 0); #endif delayMS(5); //----------------------------------------------------------------------- // Master Receive and Slave Send //----------------------------------------------------------------------- SPI_MasterReceive(mrx0_buf, sizeof(mrx0_buf)); #ifdef SPI_WITH_DMA SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk; /* Disable SysTick IRQ */ __WFI(); SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; /* Enable SysTick IRQ */ #else while(gp_spi_rx_address != 0); #endif delayMS(2);

int main(void) { /* USER CODE BEGIN 1 */ uint8_t ucDevType; volatile uint32_t ii; MPU_Config(); /* USER CODE END 1 */ /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CRC_Init(); MX_FMC_Init(); MX_I2C1_Init(); MX_LTDC_Init(); MX_QUADSPI_Init(); MX_RNG_Init(); MX_SDMMC1_SD_Init(); MX_SPI3_Init(); MX_USART1_UART_Init(); MX_USART3_UART_Init(); MX_DMA2D_Init(); MX_TouchGFX_Init(); /* USER CODE BEGIN 2 */ bsp_InitUart(); bsp_InitDWT(); bsp_InitDS18B20(); // for(ii = 0;ii < 1000000; ii++) GPIOB->BSRR = GPIO_PIN_1 << 16; // if(!ps2is) // { // bsp_InitPS2(); // PS2_StartWork(); // bsp_DelayMS(200); // ucDevType = PS2_GetDevceType(); // if(ucDevType == PS2_KEYBOARD) // { // ps2is = 1; //// key.setVisible(1); // PS2_InitKeyboard(); // } // PS2_StopWork(); /* 停止PS2中断 */ // } //AppTaskCreate (); tx_kernel_enter(); comClearRxFifo(CounterCom2); comClearRxFifo(CounterCom); comClearRxFifo(COM6); comClearTxFifo(CounterCom2); comClearTxFifo(CounterCom); comClearTxFifo(COM6); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ }解释这部分代码

最新推荐

recommend-type

模板059.pptx

论文答辩ppt模板
recommend-type

全国各地电信铁通DNS服务器地址.doc

服务器
recommend-type

最新服务器双机热备解决方案.docx

服务器、电脑、
recommend-type

服务器及存储高性能双机热备方案.docx

服务器
recommend-type

hiprint 自定义打印模版框架

hiprint 自定义打印模版框架
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。