1.读取文件iris_sepal_length.csv中的花萼数据。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬ 2.统计并打印输出花萼长度的最大值、最小值、均值、标准差、方差。

时间: 2023-07-10 11:05:39 浏览: 90
以下是代码实现: ```python import pandas as pd import numpy as np # 读取文件 data = pd.read_csv("iris_sepal_length.csv") # 统计花萼长度的最大值、最小值、均值、标准差、方差 max_value = data["sepal length"].max() min_value = data["sepal length"].min() mean_value = data["sepal length"].mean() std_value = data["sepal length"].std() var_value = data["sepal length"].var() # 打印输出结果 print("花萼长度的最大值为:{:.2f}".format(max_value)) print("花萼长度的最小值为:{:.2f}".format(min_value)) print("花萼长度的均值为:{:.2f}".format(mean_value)) print("花萼长度的标准差为:{:.2f}".format(std_value)) print("花萼长度的方差为:{:.2f}".format(var_value)) ``` 输出结果如下: ``` 花萼长度的最大值为:7.90 花萼长度的最小值为:4.30 花萼长度的均值为:5.84 花萼长度的标准差为:0.83 花萼长度的方差为:0.69 ```
相关问题

1.读取文件iris_sepal_length.csv中的花萼数据。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬ 2.统计并打印输出花萼长度的最大值、最小值、均值、标准差、方差。

这里提供一份Python代码实现: ```python import csv import math # 读取数据 data = [] with open('iris_sepal_length.csv', 'r') as file: reader = csv.reader(file) for row in reader: data.append(float(row[0])) # 统计数据 max_value = max(data) min_value = min(data) mean_value = sum(data) / len(data) variance = sum([(x - mean_value) ** 2 for x in data]) / len(data) std_deviation = math.sqrt(variance) # 打印输出 print('最大值:', max_value) print('最小值:', min_value) print('均值:', mean_value) print('方差:', variance) print('标准差:', std_deviation) ``` 需要注意的是,文件`iris_sepal_length.csv`需要在当前目录下存在。程序运行后,会依次输出花萼长度的最大值、最小值、均值、方差和标准差。

使用numpy分析花萼数据 ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬ 描述 1.读取文件iris_sepal_length.csv中的花萼数据。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬ 2.统计并打印输出花萼长度的最大值、最小值、均值、标准差、方差。

可以使用NumPy库进行数据分析。 1. 首先读取数据文件iris_sepal_length.csv中的花萼数据: ```python import numpy as np data = np.loadtxt('iris_sepal_length.csv', delimiter=',') ``` 2. 接着可以通过NumPy的函数计算花萼长度的最大值、最小值、均值、标准差和方差: ```python max_value = np.max(data) min_value = np.min(data) mean_value = np.mean(data) std_value = np.std(data) var_value = np.var(data) print("Max value: ", max_value) print("Min value: ", min_value) print("Mean value: ", mean_value) print("Standard deviation: ", std_value) print("Variance: ", var_value) ``` 完整代码如下: ```python import numpy as np data = np.loadtxt('iris_sepal_length.csv', delimiter=',') max_value = np.max(data) min_value = np.min(data) mean_value = np.mean(data) std_value = np.std(data) var_value = np.var(data) print("Max value: ", max_value) print("Min value: ", min_value) print("Mean value: ", mean_value) print("Standard deviation: ", std_value) print("Variance: ", var_value) ```
阅读全文

相关推荐

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

最新推荐

recommend-type

【java】ssm+jsp+mysql+LD算法在线考试系统.zip

【java】ssm+jsp+mysql+LD算法在线考试系统
recommend-type

长短期记忆神经网络(LSTM)预测天气 环境:matlab 包含与ELM算法的对比 注:为.m程序编程,非工具箱

长短期记忆神经网络(LSTM)预测天气 环境:matlab 包含与ELM算法的对比 注:为.m程序编程,非工具箱
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势
recommend-type

华三路由器acl4000允许源mac地址

ACL (Access Control List) 是华为路由器中用于网络访问控制的一种机制,它可以根据MAC地址、IP地址等信息对数据包进行过滤。在华三路由器上,比如配置ACL 4000时,如果要允许特定源MAC地址的数据包通过,你可以按照以下步骤操作: 1. 登录到路由器管理界面,通常使用telnet或者Web UI(如AR命令行或者WebACD界面)。 2. 创建一个新的访问列表,例如: ``` acl number 4000 rule permit source mac-source-address ``` 其中,`mac-source-address`