用matlab设计一个递归函数文件pow(x,m):xm,并在命令窗口中分别输出表达式2的5次方、(-3)的4次方、5的-2次方的值。
时间: 2024-02-21 12:02:17 浏览: 126
好的,以下是MATLAB的代码实现:
```matlab
function y = pow(x, m)
if m == 0
y = 1;
elseif m > 0
y = x * pow(x, m-1);
else
y = pow(x, m+1) / x;
end
end
```
这个函数的实现原理是通过递归实现幂运算。如果指数m为0,则结果为1;如果指数m为正数,则将运算分解为x乘以x的m-1次幂;如果指数m为负数,则将运算分解为x的-m次幂等于1除以x的m次幂。
接下来,你可以在命令窗口中分别输出表达式2的5次方、(-3)的4次方、5的-2次方的值。以下是示例代码:
```matlab
x = 2;
m = 5;
y = pow(x, m);
fprintf("%d的%d次方为:%d\n", x, m, y);
x = -3;
m = 4;
y = pow(x, m);
fprintf("(%d)的%d次方为:%d\n", x, m, y);
x = 5;
m = -2;
y = pow(x, m);
fprintf("%d的%d次方为:%f\n", x, m, y);
```
你只需要将以上三段代码放在同一个脚本文件中,运行即可得到结果。
相关问题
用matlab设计一个递归函数文件gcdw(ab):求整数a与b的最大公约数,并在脚本文件中输入整数a与整数b的值,并输出它们的最大公约数。
好的,以下是MATLAB的代码实现:
```matlab
function g = gcdw(a, b)
if b == 0
g = a;
else
g = gcdw(b, mod(a, b));
end
end
```
这个函数的实现原理与Python的代码实现是一样的,也是通过辗转相除法求最大公约数。
接下来,你可以在脚本文件中输入整数a与整数b的值,并输出它们的最大公约数。以下是示例代码:
```matlab
a = input("请输入整数a: ");
b = input("请输入整数b: ");
g = gcdw(a, b);
fprintf("整数a与整数b的最大公约数为:%d\n", g);
```
你只需要将以上两段代码放在同一个脚本文件中,运行即可得到结果。
用c语言编写一个数阶乘递归和非递归函数,并分别在主函数中调用,输出十以内所有的阶乘
在C语言中,我们可以编写两个函数来计算一个整数的阶乘:一个是递归版本,另一个是非递归版本。以下是代码示例:
**递归版本的阶乘函数:**
```c
#include <stdio.h>
unsigned long long factorial_recursive(int n) {
if (n == 0 || n == 1)
return 1;
else
return n * factorial_recursive(n - 1);
}
```
**非递归版本的阶乘函数:**
```c
unsigned long long factorial_iterative(int n) {
unsigned long long result = 1;
for (int i = 2; i <= n; ++i) {
result *= i;
}
return result;
}
```
在主函数`main()`中调用这两个函数并打印结果:
```c
int main() {
int numbers[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int size = sizeof(numbers) / sizeof(numbers[0]);
printf("阶乘结果(递归):\n");
for (int i = 0; i < size; ++i) {
printf("%d! = %llu\n", numbers[i], factorial_recursive(numbers[i]));
}
printf("\n阶乘结果(迭代):\n");
for (int i = 0; i < size; ++i) {
printf("%d! = %llu\n", numbers[i], factorial_iterative(numbers[i]));
}
return 0;
}
```
运行此程序将输出每个数从0到9的阶乘,首先是递归版,然后是非递归版。
阅读全文
相关推荐
















