解释下这段代码int blkNums = input_data.size()/4; //1.一个块一个块地处理,这是第一部分地工作 for(int i=0;i<blkNums;i++){ unsigned int K = getBlkno(input_data,i); K *= c1; K = _rotl(K,r1); K *= c2; K = _rotl(K,r2); h = h*m + n; }

时间: 2024-04-23 12:23:56 浏览: 23
这段代码是对输入数据进行分块处理,每个块的大小为4个字节。首先计算出需要处理的块数blkNums,然后对每个块进行如下操作: 1. 通过getBlkno函数获取当前块的编号K; 2. 将K乘以常数c1,然后进行左旋移r1位; 3. 将结果再乘以常数c2,然后进行左旋移r2位; 4. 最后将结果与当前的哈希值h相乘再加上一个常数n,得到新的哈希值h。 这个过程就是MurmurHash3哈希算法中的一部分,它对于输入数据的每个块都进行了类似的操作,最终得到了一个哈希值h。
相关问题

代码块2:unsigned int Murmurhash3(string input_data,unsigned int seed){ unsigned int h = seed; //声明常量 const unsigned int c1 = 0xcc9e2d51; // 3,432,918,353 const unsigned int c2 = 0x1b873593; // 461,845,907 const int r1 = 15; const int r2 = 13; const int m = 5; const int n = 0xe6546b64; //3,864,292,196 //分块处理 int blkNums = input_data.size()/4; //1.一个块一个块地处理,这是第一部分地工作 for(int i=0;i<blkNums;i++){ unsigned int K = getBlkno(input_data,i); K *= c1; K = _rotl(K,r1); K *= c2; K = _rotl(K,r2); h = h*m + n; } //2.处理剩余量 string remaining_bytes = input_data.substr(blkNums*4); unsigned int k = 0; switch (remaining_bytes.size()){ case 3:k^=remaining_bytes[2]<<16; case 2:k^=remaining_bytes[1]<<8; case 1:k^=remaining_bytes[0]; } k = k * c1; k = _rotl(k,r1); k = k * c2; h ^= k; h ^= input_data.size(); //3.加强雪崩测试 h ^= h >> 16; h *= 0x85ebca6b; // 2,246,822,507 h ^= h >> 13; h *= 0xc2b2ae35; // 3,266,489,909 h ^= h >> 16; return h; }

这段代码是一个实现MurmurHash3算法的函数,用于计算字符串的哈希值,并返回一个32位无符号整数。 MurmurHash3算法是一种非加密型哈希算法,具有高效、快速、分布均匀等特点。该算法将输入的字符串分成多个块进行处理,其中每个块都被视为一个32位无符号整数。通过对所有块进行一系列位运算和移位操作,最终得到一个32位的哈希值。 函数的输入参数包括一个字符串input_data和一个种子值seed。其中,input_data是要计算哈希值的字符串,seed是用于初始化哈希值的种子值。 函数首先将seed赋值给变量h,作为哈希值的初始值。然后,声明一些常量和变量,用于在后续的计算中使用。 接着,函数将input_data分成若干个4字节的块,对每个块进行一系列的位运算和移位操作,最终得到一个中间的哈希值。具体地,函数分为以下三个步骤: 1. 分块处理 函数首先计算input_data中包含的块数blkNums,然后对每个块进行处理。具体地,对于第i个块,函数调用getBlkno(input_data,i)函数获取该块对应的32位无符号整数K,然后对K进行一系列的位运算和移位操作,最终得到一个中间值,并将该中间值与h进行合并,得到新的哈希值。 2. 处理剩余量 如果input_data的长度不是块大小(即4的倍数),则会存在一些剩余的字符,需要单独处理。函数首先将剩余的字符存储到变量remaining_bytes中,然后根据remaining_bytes的长度,将其转换为一个32位的无符号整数k。对k进行一系列的位运算和移位操作,最终得到一个中间值,并将该中间值与h进行合并,得到新的哈希值。 3. 加强雪崩测试 最后,函数对哈希值进行一系列的加强雪崩测试,以增加哈希值的随机性和分布均匀性。具体地,函数将哈希值h右移16位,然后与h进行异或操作,再将结果乘以常量0x85ebca6b,再右移13位,再与h进行异或操作,最后将结果乘以常量0xc2b2ae35,并将最终结果返回。 总体来说,这段代码实现了MurmurHash3算法的核心部分,通过对字符串的分块处理和位运算操作,计算出了一个32位无符号整数的哈希值。

from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误

在段代码中,有一些错误和需要注意的地方: 1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。 2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。 3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。 4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。 下面是修改后的代码: ```python from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size, verbose=2, workers=12) score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size)) scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size)) ```

相关推荐

将下面代码写成matlab形式 int runBm3d( const Mat image_noisy, Mat& image_basic, Mat& image_denoised ) { int Height = image_noisy.rows; int Width = image_noisy.cols; int Channels = image_noisy.channels(); vector<Mat> block_noisy;//store the patch vector<int>row_idx;//patch idx along the row direction vector<int>col_idx; GetAllBlock(image_noisy, Width, Height, Channels, kHard, pHard, block_noisy, row_idx, col_idx); int bn_r = row_idx.size(); int bn_c = col_idx.size(); tran2d(block_noisy, kHard); vector<int> sim_num;//index number for the selected similar patch in the block vector vector<int> sim_idx_row;//index number for the selected similar patch in the original Mat vector<int> sim_idx_col; vector<Mat>data;//store the data during transforming and shrinking Mat kaiser = gen_kaiser(beta, kHard);//2-D kaiser window float weight_hd = 1.0;//weights used for current relevent patch Mat denominator_hd(image_noisy.size(), CV_32FC1, Scalar::all(0)); Mat numerator_hd(image_noisy.size(), CV_32FC1, Scalar::all(0)); for (int i = 0; i < bn_r; i++) { for (int j = 0; j < bn_c; j++) { //for each pack in the block sim_num.clear(); sim_idx_row.clear(); sim_idx_col.clear(); data.clear(); getSimilarPatch(block_noisy, data, sim_num, i, j, bn_r, bn_c, int((nHard - kHard) / pHard) + 1, NHard, tao_hard);//block matching for (int k = 0; k < sim_num.size(); k++)//calculate idx in the left-top corner { sim_idx_row.push_back(row_idx[sim_num[k] / bn_c]); sim_idx_col.push_back(col_idx[sim_num[k] % bn_c]); } tran1d(data, kHard);//3-D transforming DetectZero(data, lambda3d * sigma);//shrink the cofficient weight_hd = calculate_weight_hd(data, sigma); Inver3Dtrans(data,kHard);//3-D inverse transforming aggregation(numerator_hd, denominator_hd, sim_idx_row, sim_idx_col, data, weight_hd, kHard, kaiser);//aggregation using weigths } } image_basic = numerator_hd / denominator_hd;

最新推荐

recommend-type

64位linux 编译c提示gnu/stubs-32.h:No such file or directory的解决方法

例如,conf_init.c文件引用../include/MyTypes.h头文件,而这个头文件又引用/usr/include/stdint.h头文件,以此类推。只有正确地引用头文件,编译器才能正确地编译程序。 最后,总结来说,解决gnu/stubs-32.h文件不...
recommend-type

信氧饮吧-奶茶管理系统

奶茶管理系统
recommend-type

win7-2008-X86处理此操作系统不能安装/不支持.net framework 4.6.2的方法

win7-2008_X86处理此操作系统不能安装/不支持.net framework 4.6.2的方法 将现有系统升级为sp1系统即可,升级文件如下
recommend-type

MySQL工资管理系统

MySQL工资管理系统
recommend-type

机器学习课程设计-基于python实现的交通标志识别源码+文档说明+结果+数据+柱状图+模型

<项目介绍> 机器学习课设 交通标志识别 交通标志识别的作用: 有几种不同类型的交通标志,如限速,禁止进入,交通信号灯,左转或右转,儿童交叉口,不通过重型车辆等。交通标志分类是识别交通标志所属类别的过程。 在本项目中,通过构建一个深度神经网络模型,可以将图像中存在的交通标志分类为不同的类别。通过该模型,我们能够读取和理解交通标志,这对所有自动驾驶汽车来说都是一项非 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。