能帮我实现基于alink框架对酒店客户评论的情感分析(python实现),算法用朴素贝叶斯
时间: 2024-03-04 10:49:26 浏览: 48
当然可以,以下是我为您提供的代码示例,其中使用了Alink框架进行情感分析:
```python
import pandas as pd
import jieba
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
import alink
from alink import *
from alink.model import *
from alink.operator import *
# 加载数据集
data = pd.read_csv('TanSongBoHotelComment.csv', encoding='gbk')
# 对数据集进行分词
def cut_words(content):
words = jieba.cut(content)
return ' '.join(words)
data['content'] = data['content'].apply(cut_words)
# 获取特征值和目标值
x = data['content']
y = data['label']
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# 将文本数据转换成向量
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(stop_words='english')
x_train = vectorizer.fit_transform(x_train)
x_test = vectorizer.transform(x_test)
# 使用Alink进行情感分析
env = Environment.get_instance()
env.set_execution_mode(env.ExecutionMode.BATCH)
env.set_parallelism(1)
train_data = alink_df(x_train, schema='content string, label int')
test_data = alink_df(x_test, schema='content string, label int')
schema = "content string, label int"
pipe = Pipeline() \
.add(Split(separator=",", schema=schema)) \
.add(CountVectorizerParams(vocab_size=10000, min_tf=1, reserved_tokens=['UNK'])) \
.add(BatchNorm(mode='batch1')) \
.add(MultinomialNBParams())
pipe.fit(train_data)
predict_table = pipe.predict(test_data)
y_pred = predict_table.collect()
y_pred = [int(i[1]) for i in y_pred]
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("朴素贝叶斯算法的准确率为:", accuracy)
```
这里使用了jieba进行分词,CountVectorizer将文本数据转换成向量,以及MultinomialNB进行朴素贝叶斯算法的训练和预测。与之前的例子不同的是,这里使用了Alink框架的Pipeline构建了一个文本分类流水线,其中包含了CountVectorizerParams和MultinomialNBParams等处理器。最后,使用predict方法进行预测,得到预测结果y_pred,并计算准确率。
阅读全文