onelayer = [] self.LayerNo = LayerNo for i in range(LayerNo): onelayer.append(BasicBlock())self.fcs = nn.ModuleList(onelayer)
时间: 2024-02-26 11:56:07 浏览: 60
这段代码的完整含义是:定义一个空列表 `onelayer`,然后根据输入的 `LayerNo` 参数循环追加 `LayerNo` 个 `BasicBlock` 实例到 `onelayer` 列表中。最后,将 `onelayer` 列表转换为 `nn.ModuleList` 对象 `self.fcs`,即一个神经网络模型的一层。这段代码通常用于构建神经网络模型中的多层相同结构的网络层。
相关问题
class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.LeakyReLU = nn.LeakyReLU(negative_slope=0.1) self.relu = nn.ReLU(inplace=True) self.elu = nn.ELU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): # out = F.ReLU(self.bn1(self.conv1(x))) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) return out 在self.layer4(out)和 self.avgpool(out)之间加CBAM
要在 `self.layer4(out)` 和 `self.avgpool(out)` 之间CBAM模块,可以按照以下步骤进行修改:
首先,导入CBAM模块的相关库:
```python
from cbam import CBAM
```
然后,在ResNet18_2D类中添加CBAM模块:
```python
self.cbam = CBAM(512) # 添加CBAM模块,输入通道数为512
```
最后,在forward方法中使用CBAM模块:
```python
out = self.layer4(out)
out = self.cbam(out) # 使用CBAM模块
out = self.avgpool(out)
```
确保在使用CBAM模块之前,已经定义了CBAM类并导入相应的库。
这样,你就在ResNet18_2D模型中成功添加了CBAM模块。请注意,这仅仅是示例代码,你可能需要根据实际情况自行进行调整和修改。
代码解析: class BasicBlock(nn.Layer): expansion = 1 def init(self, in_channels, channels, stride=1, downsample=None): super().init() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def init(self, in_channels=3, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2, 1, 2, 1, 1]): self.inplanes = 32 super(ResNet45, self).init() self.conv1 = nn.Conv2D( in_channels, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) self.out_channels = 512 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) return x
这是一个 PyTorch 实现的 ResNet 模型,包括 BasicBlock 类和 ResNet45 类。
BasicBlock 类是 ResNet 中的基本模块,由两个卷积层和一个残差连接组成。expansion=1 表示残差连接的扩张率为 1。输入特征图 x 通过 conv1、bn1、relu、conv2、bn2、残差连接和 relu 激活函数后得到输出特征图 out。
ResNet45 类继承自 nn.Layer 类,包含了 ResNet45 模型的结构。该模型包含五个阶段,每个阶段包含若干 BasicBlock 模块。输入特征图先经过一个卷积层、bn1 和 relu 激活函数,然后进入五个阶段,最后输出特征图 x。每个阶段中的 BasicBlock 模块数量由 layers 参数指定,步长由 strides 参数指定。_make_layer 方法用于构建一个阶段,其中 planes 参数表示输出特征图的通道数,stride 参数表示步长。如果步长不为 1 或输入输出特征图通道数不同时,需要进行下采样,即 downsample,downsample 是一个包含 Conv2D 和 BatchNorm2D 的序列。
这个模型的输出特征图通道数为 512,可以用于分类、检测、分割等任务。
阅读全文