train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))
时间: 2023-10-07 19:07:23 浏览: 104
这行代码是将模型在训练集上的均方根误差(RMSE)加入到一个列表(train_ls)中。log_rmse是一个函数,它计算了模型在训练集上的RMSE,并且将其取对数,因为在许多情况下,我们更关心误差的相对大小而不是绝对大小。这个函数接受许多参数,包括模型、训练集特征、训练集标签、模型参数theta以及训练集的大小。最后一个参数是用来计算RMSE的,它用来标准化误差的大小,以便我们可以比较不同大小的数据集上的模型性能。
相关问题
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay) for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() l = loss(net(X), y) l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls 逐行解释一下代码
这段代码是一个用于训练神经网络模型的函数。下面是逐行的解释:
1. `train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size)`:定义了一个名为`train`的函数,接受许多参数,包括神经网络模型`net`、训练集特征`train_features`、训练集标签`train_labels`、测试集特征`test_features`、测试集标签`test_labels`、训练轮数`num_epochs`、学习率`learning_rate`、权重衰减`weight_decay`和批大小`batch_size`。
3. `train_ls, test_ls = [], []`:创建两个空列表`train_ls`和`test_ls`,用于存储每个轮次的训练和测试损失。
4. `train_iter = d2l.load_array((train_features, train_labels), batch_size)`:将训练集特征和标签打包成一个迭代器,每次迭代返回一个由批次大小指定的小批量数据。
5. `optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)`:创建一个Adam优化器,将神经网络模型`net`的参数传递给优化器,并设置学习率和权重衰减。
6. `for epoch in range(num_epochs):`:对于每个训练轮次,执行以下操作:
7. `for X, y in train_iter:`:对于每个小批量数据,执行以下操作:
8. `optimizer.zero_grad()`:将优化器的梯度缓存清零,以便进行反向传播。
9. `l = loss(net(X), y)`:计算模型预测值`net(X)`和真实标签`y`之间的损失。
10. `l.backward()`:执行反向传播,计算损失函数对模型参数的梯度。
11. `optimizer.step()`:根据计算的梯度更新模型参数。
12. `train_ls.append(log_rmse(net, train_features, train_labels))`:将当前训练轮次的训练损失添加到`train_ls`列表中,使用函数`log_rmse`计算训练集的均方根对数误差。
13. `if test_labels is not None:`:如果测试集标签不为空,则执行以下操作:
14. `test_ls.append(log_rmse(net, test_features, test_labels))`:将当前训练轮次的测试损失添加到`test_ls`列表中,使用函数`log_rmse`计算测试集的均方根对数误差。
15. `return train_ls, test_ls`:返回训练损失和测试损失的列表。
请注意,上述代码中的一些函数(如`loss`和`log_rmse`)没有给出其具体实现,这些函数可能是自定义的或来自其他库。
in_features = train_features.shape[1] def train(model, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] theta = np.zeros((in_features, 1)) best_theta = np.zeros((in_features, 1)) best_loss = np.inf for epoch in range(num_epochs): train_iter = data_iter(batch_size, train_features, train_labels) for X, y in train_iter: theta=gradientDescent(X, y, theta, learning_rate, weight_decay) train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))帮我加个注释
# in_features表示输入特征的数量
in_features = train_features.shape[1]
# 定义训练函数,接受模型、训练数据、测试数据、超参数等作为输入
def train(model, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
# 初始化训练误差和测试误差列表
train_ls, test_ls = [], []
# 初始化模型参数theta(权重)
theta = np.zeros((in_features, 1))
# 初始化最佳模型参数和最小测试误差
best_theta = np.zeros((in_features, 1))
best_loss = np.inf
# 循环迭代训练num_epochs次
for epoch in range(num_epochs):
# 随机生成batch_size大小的数据批次,用于训练
train_iter = data_iter(batch_size, train_features, train_labels)
# 遍历数据批次,计算梯度并更新模型参数theta
for X, y in train_iter:
theta=gradientDescent(X, y, theta, learning_rate, weight_decay)
# 计算每轮迭代后的训练误差和测试误差,并存入对应的列表中
train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))
test_ls.append(log_rmse(model, test_features, test_labels, theta, len(test_labels)))
# 如果当前模型参数对应的测试误差比历史最小值更小,则更新最佳模型参数和最小测试误差
if test_ls[-1] < best_loss:
best_theta = theta
best_loss = test_ls[-1]
# 返回最佳模型参数和训练误差、测试误差列表
return best_theta, train_ls, test_ls
阅读全文