for i in range(len(train_data) - seq_len - pre_len): train_X.append(np.array(train_data[i : i + seq_len])) train_Y.append(np.array(train_data[i + seq_len : i + seq_len + pre_len]))
时间: 2023-06-07 08:11:01 浏览: 237
对于这段代码,它是指对训练数据进行切片处理,其中train_data是数据集,seq_len是序列长度,pre_len是预测长度。代码通过循环遍历数据集,每次提取一个序列(长度为seq_len),并将其作为训练输入(train_X),同时提取下一个序列(从i+seq_len开始,长度为pre_len),将其作为训练标签(train_Y)。这样就可以将数据处理为模型所需的输入和输出。
相关问题
for i in range(0, len(ori_data) - seq_len): _x = ori_data[i:i + seq_len] temp_data.append(_x)
这段代码是一个循环,用于将长度为seq_len的子序列从ori_data中提取出来,并将其添加到temp_data列表中。
循环的范围是从0到len(ori_data) - seq_len。这样可以保证在提取子序列时不会超出ori_data的边界。
在每次循环中,通过切片操作ori_data[i:i + seq_len],将从索引i开始,长度为seq_len的子序列提取出来,并赋值给变量_x。
然后,将_x添加到temp_data列表中,用于存储所有提取出的子序列。
循环结束后,temp_data中就包含了所有长度为seq_len的子序列,可以在后续的代码中使用。
gan_args = batch_size, learning_rate, noise_dim, 24, 2, (0, 1), dim def preprocess(data, seq_len): ori_data = data[::-1] scaler = MinMaxScaler().fit(ori_data) ori_data = scaler.transform(ori_data) temp_data = [] for i in range(0, len(ori_data) - seq_len): _x = ori_data[i:i + seq_len] temp_data.append(_x) idx = np.random.permutation(len(temp_data)) data = [] for i in range(len(temp_data)): data.append(temp_data[idx[i]]) return data
这段代码是一个用于数据预处理的函数。它接受两个参数:data和seq_len。data是原始数据,seq_len是序列的长度。
首先,代码将原始数据进行了反转([::-1]),然后使用MinMaxScaler对数据进行归一化处理。归一化后的数据存储在ori_data中。
接下来,代码创建了一个空列表temp_data,并通过循环将长度为seq_len的子序列添加到temp_data中。
然后,通过随机重排列的方式对temp_data进行打乱。这里使用了np.random.permutation函数生成一个打乱顺序的索引数组idx。
最后,通过遍历idx,将打乱后的数据按照新的顺序添加到data列表中。
最终,函数返回data,即经过预处理后的数据。
阅读全文