floyd算法求最短路径python

时间: 2023-06-05 22:47:18 浏览: 81
Floyd算法是一种动态规划算法,用于求解图中所有节点之间的最短路径。它的时间复杂度为O(n^3),适用于较小的图。 在Python中,可以使用二维数组来表示图,其中数组元素a[i][j]表示节点i到节点j的距离。如果节点i和节点j之间没有边相连,则a[i][j]的值为无穷大。 以下是Floyd算法的Python实现: ```python def floyd(graph): n = len(graph) dist = [[] * n for i in range(n)] for i in range(n): for j in range(n): dist[i][j] = graph[i][j] for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist ``` 其中,graph是一个二维数组,表示图的邻接矩阵。函数返回一个二维数组dist,其中dist[i][j]表示节点i到节点j的最短路径长度。 例如,对于下面这个图: ``` --1--2 | | | 3--4--5 ``` 其邻接矩阵为: ``` graph = [ [, 1, 1, float('inf'), float('inf'), float('inf')], [1, , 1, 1, float('inf'), float('inf')], [1, 1, , float('inf'), 1, 1], [float('inf'), 1, float('inf'), , 1, float('inf')], [float('inf'), float('inf'), 1, 1, , 1], [float('inf'), float('inf'), 1, float('inf'), 1, ] ] ``` 调用floyd函数: ```python dist = floyd(graph) ``` 得到的dist为: ``` [ [, 1, 1, 2, 2, 2], [1, , 1, 1, 2, 2], [1, 1, , 2, 1, 1], [2, 1, 2, , 1, 3], [2, 2, 1, 1, , 1], [2, 2, 1, 3, 1, ] ] ``` 其中,dist[i][j]表示节点i到节点j的最短路径长度。例如,dist[][5]表示节点到节点5的最短路径长度为2。

相关推荐

假设有下面这个图,我们要求出从A到其他各个节点的最短路径: 2 3 A ------ B ------ C | 1 4 | | 5 | D ---------------- E 6 首先我们初始化一个二维数组dist,表示起点A到各个节点的最短距离。将起点A到自己的距离设为0,其他节点的距离先设为无穷大(因为我们还不知道最短距离是多少): dist = [ [0, inf, inf, inf, inf], [inf, 0, inf, inf, inf], [inf, inf, 0, inf, inf], [inf, inf, inf, 0, inf], [inf, inf, inf, inf, 0] ] 接下来,我们需要利用Floyd算法,逐步更新dist数组,直到找到所有节点的最短路径。 Floyd算法的核心是三重循环,其中最外层的循环控制“中转节点”,即在更新A到B的最短距离时,需要通过一个中转节点(可能是C、D、E中的任意一个)来实现。中间的两重循环分别遍历所有的起点和终点,如果发现通过当前中转节点可以得到更短的路径,则更新dist数组。 下面是Floyd算法的Python实现: python def floyd(dist): n = len(dist) for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] dist = [ [0, 2, 1, inf, inf], [inf, 0, inf, inf, inf], [inf, 3, 0, 4, inf], [inf, inf, inf, 0, 6], [inf, inf, inf, inf, 0] ] floyd(dist) print(dist) 输出结果为: [ [0, 2, 1, 5, 11], [inf, 0, inf, inf, inf], [inf, 3, 0, 4, 10], [inf, inf, inf, 0, 6], [inf, inf, inf, inf, 0] ] 可以看到,最终dist数组中包含了A到各个节点的最短距离。比如,A到节点B的最短距离为2,A到节点C的最短距离为1,A到节点D的最短距离为5,A到节点E的最短距离为11。
以下是 Floyd 算法在 Python 中的代码实现,以及一个最短路径的例子: python import sys # 计算任意两点之间的最短距离和路径 def floyd(graph): n = len(graph) # 初始化距离矩阵和路径矩阵 dist = [[graph[i][j] for j in range(n)] for i in range(n)] path = [[j for j in range(n)] for i in range(n)] # 遍历所有节点,以 k 为中间节点更新距离矩阵和路径矩阵 for k in range(n): for i in range(n): for j in range(n): if dist[i][k] != sys.maxsize and dist[k][j] != sys.maxsize: new_dist = dist[i][k] + dist[k][j] if new_dist < dist[i][j]: dist[i][j] = new_dist path[i][j] = path[i][k] # 构建路径 res = [] for i in range(n): for j in range(n): if i != j: curr_path = [i] while curr_path[-1] != j: curr_path.append(path[curr_path[-1]][j]) res.append((i, j, dist[i][j], curr_path)) return res # 示例用法 graph = [ [0, 3, 8, sys.maxsize, -4], [sys.maxsize, 0, sys.maxsize, 1, 7], [sys.maxsize, 4, 0, sys.maxsize, sys.maxsize], [2, sys.maxsize, -5, 0, sys.maxsize], [sys.maxsize, sys.maxsize, sys.maxsize, 6, 0] ] res = floyd(graph) for i, j, d, path in res: print(f"从节点 {i} 到节点 {j} 的最短路径长度为 {d},路径为 {' -> '.join(str(p) for p in path)}") 输出结果为: 从节点 0 到节点 1 的最短路径长度为 3,路径为 0 -> 1 从节点 0 到节点 2 的最短路径长度为 -3,路径为 0 -> 4 -> 3 -> 2 从节点 0 到节点 3 的最短路径长度为 2,路径为 0 -> 4 -> 3 从节点 0 到节点 4 的最短路径长度为 -4,路径为 0 -> 4 从节点 1 到节点 0 的最短路径长度为 5,路径为 1 -> 3 -> 0 从节点 1 到节点 2 的最短路径长度为 1,路径为 1 -> 3 -> 2 从节点 1 到节点 3 的最短路径长度为 4,路径为 1 -> 3 从节点 1 到节点 4 的最短路径长度为 8,路径为 1 -> 3 -> 2 -> 4 从节点 2 到节点 0 的最短路径长度为 7,路径为 2 -> 3 -> 0 从节点 2 到节点 1 的最短路径长度为 4,路径为 2 -> 3 -> 1 从节点 2 到节点 3 的最短路径长度为 5,路径为 2 -> 3 从节点 2 到节点 4 的最短路径长度为 1,路径为 2 -> 4 从节点 3 到节点 0 的最短路径长度为 2,路径为 3 -> 0 从节点 3 到节点 1 的最短路径长度为 -1,路径为 3 -> 1 从节点 3 到节点 2 的最短路径长度为 -5,路径为 3 -> 2 从节点 3 到节点 4 的最短路径长度为 6,路径为 3 -> 2 -> 4 从节点 4 到节点 0 的最短路径长度为 8,路径为 4 -> 3 -> 0 从节点 4 到节点 1 的最短路径长度为 5,路径为 4 -> 3 -> 1 从节点 4 到节点 2 的最短路径长度为 1,路径为 4 -> 2 从节点 4 到节点 3 的最短路径长度为 -2,路径为 4 -> 3 其中,每个元组的第一个和第二个元素表示起点和终点节点,第三个元素表示最短路径长度,第四个元素表示最短路径经过的节点。
常见的最短路径算法有 Dijkstra 算法和 Floyd 算法。 Dijkstra 算法适用于有向无环图和有向图中没有负权边的情况,其思路是从起点开始不断扩展到未标记的节点,每次选取当前距离最短的节点作为标记节点,直到到达终点或者所有节点都被标记。 以下是 Dijkstra 算法的 Python 代码实现: python import heapq def dijkstra(graph, start, end): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 初始化堆 heap = [(0, start)] while heap: (d, node) = heapq.heappop(heap) # 如果当前节点已经被标记,则跳过 if d > dist[node]: continue # 扩展当前节点的邻居节点 for neighbor, weight in graph[node].items(): new_dist = dist[node] + weight # 如果新的距离比原来的距离更短,则更新距离字典并加入堆 if new_dist < dist[neighbor]: dist[neighbor] = new_dist heapq.heappush(heap, (new_dist, neighbor)) return dist[end] Floyd 算法适用于有向图和有向图中可能存在负权边的情况,其思路是通过动态规划,依次尝试以每个节点为中转点来更新两个节点之间的最短路径。 以下是 Floyd 算法的 Python 代码实现: python def floyd(graph): # 初始化距离矩阵 n = len(graph) dist = [[float('inf')]*n for _ in range(n)] for i in range(n): dist[i][i] = 0 for j, w in graph[i].items(): dist[i][j] = w # 动态规划更新距离矩阵 for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist
### 回答1: 在 Python 中,有许多算法可以用来计算最短路径。其中包括 Dijkstra 算法、A* 算法、Bellman-Ford 算法和 Floyd-Warshall 算法。 Dijkstra 算法是一种贪心算法,用于计算单源最短路径。它适用于边权为非负的图。Dijkstra 算法的时间复杂度为 O(E log V),其中 E 和 V 分别表示边数和顶点数。 A* 算法是一种启发式搜索算法,用于计算单源最短路径。它的优势在于,它可以根据地图信息(例如路线长度、转弯次数等)估算剩余距离,并使用这些信息来更快地找到最短路径。 Bellman-Ford 算法是一种动态规划算法,用于计算单源最短路径。它可以处理边权可以为负的图,但是它的时间复杂度比 Dijkstra 算法差。 Floyd-Warshall 算法是一种动态规划算法,用于计算所有点对之间的最短路径。它的时间复杂度为 O(V^3),其中 V 表示顶点数。 你可以使用 Python 的第三方库,如 NetworkX、igraph 或 Boost.Graph,来轻松实现这些算法。 ### 回答2: Python中计算最短路径的算法有很多种,其中最常用的是Dijkstra算法和Floyd-Warshall算法。 Dijkstra算法是一种适用于有向图和带权边的最短路径算法。它通过不断选择当前最短路径长度的顶点来实现,直到找到终点或者所有顶点都被遍历完。算法的基本思想是,从起点开始,逐步确定所有顶点到起点的最短路径,并不断更新路径长度和路径距离。Dijkstra算法能够找到起点到终点的最短路径,并返回路径长度。 Floyd-Warshall算法是一种适用于有向图和带权边的所有最短路径算法。它通过动态规划的思想,逐步计算任意两个顶点之间的最短路径长度。算法的基本思想是,对于每一个顶点对(i,j),在考虑中间节点(1~n)的情况下,取其中路径长度最小的作为最终结果。Floyd-Warshall算法能够找到所有顶点之间的最短路径长度,以及路径信息。 在Python中,可以使用图论库networkx来实现最短路径算法。通过创建有向图,添加带权边,然后调用networkx库中的最短路径函数,即可计算最短路径。例如,可以使用networkx库中的dijkstra_path函数计算Dijkstra算法,或者使用networkx库中的floyd_warshall函数计算Floyd-Warshall算法。 总之,Python提供了丰富的图论库和算法函数,可以方便地计算最短路径。可以根据具体情况选择适合的算法,并结合相应的库函数进行实现。 ### 回答3: Python中有几种常见的计算最短路径的算法,如Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。 Dijkstra算法是一种在加权图中计算单个源最短路径的贪心算法。其基本思想是根据起点到各个顶点的最短距离逐步扩展路径,直到达到目标顶点。在Python中,可以使用优先队列来实现Dijkstra算法。 Bellman-Ford算法是一种可以处理有向图和带有负权边的图的单源最短路径算法。该算法通过逐步迭代更新各个顶点的最短距离,直到没有更改为止。在Python中,可以使用邻接表或邻接矩阵来实现Bellman-Ford算法。 Floyd-Warshall算法用于计算所有顶点之间的最短路径。它通过逐步迭代来更新每对顶点之间的最短距离,直到得到所有顶点之间的最短路径。在Python中,可以使用二维数组或矩阵来实现Floyd-Warshall算法。 这些算法在Python中都有对应的实现,可以通过网络搜索相关的库或使用自己实现的代码来计算最短路径。例如,对于Dijkstra算法,可以使用heapq库中的heapq模块来实现优先队列,使用字典来存储顶点和距离的关系。对于Bellman-Ford算法和Floyd-Warshall算法,可以使用二维数组或矩阵来存储顶点之间的距离,并使用循环嵌套来进行更新和迭代。
Python中有很多种最短路径算法,以下是其中几种: 1. Dijkstra算法 Dijkstra算法是一种贪心算法,用于找到从单个源节点到所有其他节点的最短路径。 python import heapq def dijkstra(graph, start): distances = {node: float('inf') for node in graph} distances[start] = 0 heap = [(0, start)] while heap: (distance, current_node) = heapq.heappop(heap) if distance > distances[current_node]: continue for neighbor, weight in graph[current_node].items(): distance_to_neighbor = distance + weight if distance_to_neighbor < distances[neighbor]: distances[neighbor] = distance_to_neighbor heapq.heappush(heap, (distance_to_neighbor, neighbor)) return distances 2. Bellman-Ford算法 Bellman-Ford算法是一种动态规划算法,用于解决带有负权边的最短路径问题。 python def bellman_ford(graph, start): distances = {node: float('inf') for node in graph} distances[start] = 0 for _ in range(len(graph) - 1): for node in graph: for neighbor, weight in graph[node].items(): if distances[node] + weight < distances[neighbor]: distances[neighbor] = distances[node] + weight for node in graph: for neighbor, weight in graph[node].items(): if distances[node] + weight < distances[neighbor]: raise ValueError("Negative weight cycle detected") return distances 3. Floyd-Warshall算法 Floyd-Warshall算法是一种动态规划算法,用于找到所有节点对之间的最短路径。 python def floyd_warshall(graph): distances = graph for k in range(len(graph)): for i in range(len(graph)): for j in range(len(graph)): distances[i][j] = min(distances[i][j], distances[i][k] + distances[k][j]) return distances 以上是几种常用的最短路径算法,选择哪种算法取决于问题的具体情况。
在Python中,可以使用多种算法来解决最短路径问题。其中最常用的算法包括Dijkstra算法、Bellman-Ford算法和Floyd算法。 Dijkstra算法是一种用于解决单源最短路径问题的贪心算法。它通过不断选择与当前节点距离最近的节点,以逐步扩展最短路径树,直到找到目标节点或所有节点都被遍历过。 Bellman-Ford算法是一种用于解决带有负权边的图的单源最短路径问题的动态规划算法。它通过对图中所有边进行松弛操作,逐步更新节点的最短路径估计值,直到收敛或检测到负权环。 Floyd算法是一种用于解决全局最短路径问题的动态规划算法。它通过维护一个二维矩阵来存储任意两个节点之间的最短路径估计值,并通过逐个节点的中转来更新矩阵中的值,最终得到全局最短路径。 除了这些经典算法之外,还有启发式算法A*可以用于求解最短路径问题。A*算法通过综合考虑节点的实际代价和预估代价,以选择下一个要扩展的节点,并逐步搜索最优解。 在Python中,可以使用图论库如NetworkX来实现这些算法,同时也可以根据具体的问题需求进行自定义实现。123 #### 引用[.reference_title] - *1* *2* *3* [Python小白的数学建模课-16.最短路径算法](https://blog.csdn.net/youcans/article/details/118555468)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

最新推荐

Python基于Floyd算法求解最短路径距离问题实例详解

主要介绍了Python基于Floyd算法求解最短路径距离问题,结合完整实例形式详细分析了Python使用Floyd算法求解最短路径距离问题的相关操作技巧与注意事项,需要的朋友可以参考下

C-C++图书管理系统340.txt

课设资源,代码可运行,附完整报告

[] - 2023-08-31 《奥本海默》上映:当世界上第一颗原子弹爆炸时,原子弹之父闪过一个念头!.pdf

互联网发展快报,最新互联网消息 互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息

plc控制交通灯毕业设计论文.doc

plc控制交通灯毕业设计论文.doc

"阵列发表文章竞争利益声明要求未包含在先前发布版本中"

阵列13(2022)100125关于先前发表的文章竞争利益声明声明未包含在先前出现的以下文章的发布版本问题 的“数组”。 的 适当的声明/竞争利益由作者提供的陈述如下。1. https://doi.org/10.1016/j.array.2020.100021“Deeplearninginstatic,metric-basedbugprediction”,Array,Vol-ume6,2020,100021,竞争利益声明:发表后联系作者,要求发表利益声明。2. 自 适 应 恢 复 数 据 压 缩 。 [ 《 阵 列 》 第 12 卷 , 2021 , 100076 ,https://doi.org/10.1016/j.array.2021.100076.竞争利益声明:发表后联系作者,要求发表利益声明。3. “使用深度学习技术和基于遗传的特征提取来缓解演示攻击”。[《阵列》第7卷,2020年,100029]https://doi.org/10.1016/j.array.2020.100029。竞争利益声明:发表后联系作者,要求发表利益声明。4. “基于混合优化算法的协作认知无线电网络资源优化分配”. [Array,Volume12,2021,100093https://doi

动态规划与最大子数组和问题:如何高效解决序列中的最大子数组和

## 1. 引言 ### 1.1 背景介绍 动态规划是一种解决复杂问题的算法设计方法,它通过将问题分解成子问题,并解决每个子问题,从而逐步构建最优解。在计算机科学和算法领域,动态规划被广泛应用于优化问题的求解。 ### 1.2 动态规划在算法中的重要性 动态规划不仅仅是一种算法,更是一种解决问题的思维方式。它通过保存子问题的解,避免了重复计算,从而在时间和空间上实现了效率的提升。这种思想在很多经典算法问题中都发挥着关键作用,其中之一便是最大子数组和问题。 ### 1.3 最大子数组和问题的实际应用场景 最大子数组和问题是在一个数组中找到一个具有最大和的连续子数组的问题。这个问题在实际中有

def charlist(): li=[] for i in range('A','Z'+1): li.append(i) return li

这段代码有误,因为 `range()` 函数的第一个参数应该是整数类型而不是字符串类型,应该改为 `range(ord('A'), ord('Z')+1)`。同时,还需要将 `ord()` 函数得到的整数转化为字符类型,可以使用 `chr()` 函数来完成。修改后的代码如下: ``` def charlist(): li = [] for i in range(ord('A'), ord('Z')+1): li.append(chr(i)) return li ``` 这个函数的作用是返回一个包含大写字母 A 到 Z 的列表。

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

动态多智能体控制的贝叶斯优化模型及其在解决复杂任务中的应用

阵列15(2022)100218空间导航放大图片创作者:John A. 黄a,b,1,张克臣c,Kevin M. 放大图片作者:Joseph D. 摩纳哥ca约翰霍普金斯大学应用物理实验室,劳雷尔,20723,MD,美国bKavli Neuroscience Discovery Institute,Johns Hopkins University,Baltimore,21218,VA,USAc约翰霍普金斯大学医学院生物医学工程系,巴尔的摩,21205,MD,美国A R T I C L E I N F O保留字:贝叶斯优化多智能体控制Swarming动力系统模型UMAPA B S T R A C T用于控制多智能体群的动态系统模型已经证明了在弹性、分散式导航算法方面的进展。我们之前介绍了NeuroSwarms控制器,其中基于代理的交互通过类比神经网络交互来建模,包括吸引子动力学 和相位同步,这已经被理论化为在导航啮齿动物的海马位置细胞回路中操作。这种复杂性排除了通常使用的稳定性、可控性和性能的线性分析来研究传统的蜂群模型此外�

动态规划入门:如何有效地识别问题并构建状态转移方程?

### I. 引言 #### A. 背景介绍 动态规划是计算机科学中一种重要的算法思想,广泛应用于解决优化问题。与贪婪算法、分治法等不同,动态规划通过解决子问题的方式来逐步求解原问题,充分利用了子问题的重叠性质,从而提高了算法效率。 #### B. 动态规划在计算机科学中的重要性 动态规划不仅仅是一种算法,更是一种设计思想。它在解决最短路径、最长公共子序列、背包问题等方面展现了强大的能力。本文将深入介绍动态规划的基本概念、关键步骤,并通过实例演练来帮助读者更好地理解和运用这一算法思想。 --- ### II. 动态规划概述 #### A. 什么是动态规划? 动态规划是一种将原问题拆解