最短路径Floyd算法python实现

时间: 2024-06-02 10:06:22 浏览: 136
Floyd算法是一种用于求解带权图中最短路径的算法,它可以用于有向图或无向图,不需要考虑边的方向,也不需要考虑边的权值为负数的情况。下面是Floyd算法的python实现: ```python def floyd(graph): # 初始化矩阵 dist = graph.copy() n = len(dist) for k in range(n): for i in range(n): for j in range(n): if dist[i][k] != float('inf') and dist[k][j] != float('inf'): dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) return dist ``` 这个实现中,graph是一个邻接矩阵,dist也是一个邻接矩阵,表示从顶点i到顶点j的最短路径长度。如果从顶点i到顶点j不存在路径,则dist[i][j]的值为正无穷。
相关问题

图论与最短路径算法python实现

图论是一种数学结构,用于研究由顶点(节点)和边连接的集合。最短路径算法则是寻找图中两点之间最短距离或最少步数的路径。Python有许多库可以方便地处理图论问题,如`networkx`和`igraph`。 其中一种常用的最短路径算法是Dijkstra算法,它适用于带权有向图或无向图,特别是当权重是非负的时候。以下是使用`networkx`库实现Dijkstra算法的一个简单示例: ```python import networkx as nx # 创建一个简单的有向图 G = nx.DiGraph() G.add_edge('A', 'B', weight=3) G.add_edge('A', 'C', weight=1) G.add_edge('B', 'C', weight=4) G.add_edge('B', 'D', weight=2) G.add_edge('C', 'D', weight=5) def dijkstra_shortest_path(G, source): distances = {node: float('inf') for node in G.nodes} distances[source] = 0 previous_nodes = {} while distances: current_node, current_distance = min((distance, node) for node, distance in distances.items() if distance != float('inf')) if current_distance == float('inf'): break distances.pop(current_node) for neighbor, edge_weight in G.edges[current_node].items(): new_distance = current_distance + edge_weight if new_distance < distances.get(neighbor, float('inf')): distances[neighbor] = new_distance previous_nodes[neighbor] = current_node return distances, previous_nodes shortest_path, predecessors = dijkstra_shortest_path(G, 'A') print("Shortest path from 'A':", shortest_path) ``` 在这个例子中,函数`dijkstra_shortest_path`计算了从源节点到所有其他节点的最短路径,并返回每个节点的距离及前驱节点。如果需要其他类型的最短路径算法(如Floyd-Warshall、Bellman-Ford等),也可以在相应的库中找到对应的实现。

最短路径算法python

常见的最短路径算法有 Dijkstra 算法和 Floyd 算法。 Dijkstra 算法适用于有向无环图和有向图中没有负权边的情况,其思路是从起点开始不断扩展到未标记的节点,每次选取当前距离最短的节点作为标记节点,直到到达终点或者所有节点都被标记。 以下是 Dijkstra 算法的 Python 代码实现: ```python import heapq def dijkstra(graph, start, end): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 初始化堆 heap = [(0, start)] while heap: (d, node) = heapq.heappop(heap) # 如果当前节点已经被标记,则跳过 if d > dist[node]: continue # 扩展当前节点的邻居节点 for neighbor, weight in graph[node].items(): new_dist = dist[node] + weight # 如果新的距离比原来的距离更短,则更新距离字典并加入堆 if new_dist < dist[neighbor]: dist[neighbor] = new_dist heapq.heappush(heap, (new_dist, neighbor)) return dist[end] ``` Floyd 算法适用于有向图和有向图中可能存在负权边的情况,其思路是通过动态规划,依次尝试以每个节点为中转点来更新两个节点之间的最短路径。 以下是 Floyd 算法的 Python 代码实现: ```python def floyd(graph): # 初始化距离矩阵 n = len(graph) dist = [[float('inf')]*n for _ in range(n)] for i in range(n): dist[i][i] = 0 for j, w in graph[i].items(): dist[i][j] = w # 动态规划更新距离矩阵 for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist ```
阅读全文

相关推荐

最新推荐

recommend-type

Python基于Floyd算法求解最短路径距离问题实例详解

Python中的Floyd算法是一种用于寻找图中所有顶点对之间最短路径的算法。它基于三角不等式原理,即若存在三个顶点A、B和C,那么从A到B的最短路径可能经过C,也可能不经过C。通过迭代的方式,Floyd算法检查所有可能的...
recommend-type

python实现最短路径的实例方法

Python 实现最短路径的实例方法主要涉及到图论和算法,特别是解决网络中两点之间最高效、最低成本的路径问题。下面将详细讲解三种常用的算法:迪杰斯特拉算法(Dijkstra算法)、弗洛伊德算法(Floyd算法)以及SPFA...
recommend-type

python实现dijkstra最短路由算法

在Python中实现Dijkstra算法,我们可以按照以下步骤进行: 1. **初始化**: - 首先,我们需要一个表示图的数据结构,通常可以使用二维列表或邻接矩阵来表示。 - 定义一个`distance`字典,记录源节点到各个节点的...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。