c语言实现strassen矩阵乘法
时间: 2023-06-07 10:03:00 浏览: 352
Strassen矩阵乘法是一种快速的矩阵乘法算法,它利用分治思想将原矩阵分解成多个小矩阵进行计算,从而减少乘法次数。
C语言实现Strassen矩阵乘法需要以下步骤:
1. 定义一个矩阵结构体,包括矩阵大小和元素数组。
2. 实现矩阵的初始化和释放函数。
3. 实现Strassen矩阵乘法函数,包括以下几个步骤:
a. 判断矩阵大小是否为2的幂,如果不是则补充0使其变为2的幂大小。
b. 将两个矩阵分解成四个小矩阵,并计算每个小矩阵的乘积。
c. 利用递归,对四个小矩阵进行Strassen矩阵乘法。
d. 根据Strassen矩阵乘法公式,合并四个小矩阵得到结果矩阵。
4. 对于矩阵大小小于某个阈值(如32)的情况,采用朴素的矩阵乘法算法。
5. 编写测试函数,对Strassen矩阵乘法进行测试。
需要注意的是,C语言实现Strassen矩阵乘法的时间复杂度为O(n^log2(7)),比朴素矩阵乘法的O(n^3)要快,但由于Strassen矩阵乘法的常数较大,实际运行效率可能会受到影响。此外,Strassen矩阵乘法还会占用更多的内存空间。因此,在应用时需要根据具体情况进行权衡和选择。
相关问题
用C语言写strassen矩阵乘法代码
我可以回答您的问题。以下是用C语言编写的Strassen矩阵乘法代码:
```c
#include <stdio.h>
void strassen(int n, int A[][n], int B[][n], int C[][n]) {
if (n == 1) {
C[0][0] = A[0][0] * B[0][0];
return;
}
int m = n / 2;
int A11[m][m], A12[m][m], A21[m][m], A22[m][m];
int B11[m][m], B12[m][m], B21[m][m], B22[m][m];
int C11[m][m], C12[m][m], C21[m][m], C22[m][m];
int P1[m][m], P2[m][m], P3[m][m], P4[m][m], P5[m][m], P6[m][m], P7[m][m];
int temp1[m][m], temp2[m][m];
// Divide A and B into 4 submatrices
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
A11[i][j] = A[i][j];
A12[i][j] = A[i][j + m];
A21[i][j] = A[i + m][j];
A22[i][j] = A[i + m][j + m];
B11[i][j] = B[i][j];
B12[i][j] = B[i][j + m];
B21[i][j] = B[i + m][j];
B22[i][j] = B[i + m][j + m];
}
}
// Compute P1, P2, P3, P4, P5, P6, P7
strassen(m, A11, subtract(m, B12, B22, temp1), P1);
strassen(m, add(m, A11, A12, temp1), B22, P2);
strassen(m, add(m, A21, A22, temp1), B11, P3);
strassen(m, A22, subtract(m, B21, B11, temp1), P4);
strassen(m, add(m, A11, A22, temp1), add(m, B11, B22, temp2), P5);
strassen(m, subtract(m, A12, A22, temp1), add(m, B21, B22, temp2), P6);
strassen(m, subtract(m, A11, A21, temp1), add(m, B11, B12, temp2), P7);
// Compute C11, C12, C21, C22
add(m, subtract(m, add(m, P5, P4, temp1), P2, temp2), P6, C11);
add(m, P1, P2, C12);
add(m, P3, P4, C21);
subtract(m, subtract(m, add(m, P5, P1, temp1), P3, temp2), P7, C22);
// Combine C11, C12, C21, C22 into C
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
C[i][j] = C11[i][j];
C[i][j + m] = C12[i][j];
C[i + m][j] = C21[i][j];
C[i + m][j + m] = C22[i][j];
}
}
}
void add(int n, int A[][n], int B[][n], int C[][n]) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] + B[i][j];
}
}
}
void subtract(int n, int A[][n], int B[][n], int C[][n]) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] - B[i][j];
}
}
}
int main() {
int n = 4;
int A[n][n] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}};
int B[n][n] = {{17, 18, 19, 20}, {21, 22, 23, 24}, {25, 26, 27, 28}, {29, 30, 31, 32}};
int C[n][n];
strassen(n, A, B, C);
printf("Result:\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%d ", C[i][j]);
}
printf("\n");
}
return 0;
}
```
希望这个代码能够帮到您!
用C语言写出Strassen矩阵乘法
好的,可以,下面是C语言实现的Strassen矩阵乘法代码:
```c
void strassen(int **A, int **B, int **C, int n) {
int i, j;
if (n == 1) {
C[0][0] = A[0][0] * B[0][0];
return;
}
int **A11 = allocate(n/2), **A12 = allocate(n/2), **A21 = allocate(n/2), **A22 = allocate(n/2);
int **B11 = allocate(n/2), **B12 = allocate(n/2), **B21 = allocate(n/2), **B22 = allocate(n/2);
int **C11 = allocate(n/2), **C12 = allocate(n/2), **C21 = allocate(n/2), **C22 = allocate(n/2);
int **M1 = allocate(n/2), **M2 = allocate(n/2), **M3 = allocate(n/2), **M4 = allocate(n/2), **M5 = allocate(n/2), **M6 = allocate(n/2), **M7 = allocate(n/2);
int **temp1 = allocate(n/2), **temp2 = allocate(n/2), **temp3 = allocate(n/2), **temp4 = allocate(n/2), **temp5 = allocate(n/2), **temp6 = allocate(n/2), **temp7 = allocate(n/2);
split_matrix(A, A11, A12, A21, A22, n);
split_matrix(B, B11, B12, B21, B22, n);
sub_matrix(B12, B22, temp1, n/2);
strassen(A11, temp1, M1, n/2);
add_matrix(A11, A12, temp2, n/2);
strassen(temp2, B22, M2, n/2);
add_matrix(A21, A22, temp3, n/2);
strassen(temp3, B11, M3, n/2);
sub_matrix(B21, B11, temp4, n/2);
strassen(A22, temp4, M4, n/2);
add_matrix(A11, A22, temp5, n/2);
add_matrix(B11, B22, temp6, n/2);
strassen(temp5, temp6, M5, n/2);
sub_matrix(A12, A22, temp7, n/2);
add_matrix(B21, B22, temp6, n/2);
strassen(temp7, temp6, M6, n/2);
sub_matrix(A11, A21, temp7, n/2);
add_matrix(B11, B12, temp6, n/2);
strassen(temp7, temp6, M7, n/2);
add_matrix(M5, M4, temp1, n/2);
sub_matrix(temp1, M2, temp2, n/2);
add_matrix(temp2, M6, C11, n/2);
add_matrix(M1, M2, C12, n/2);
add_matrix(M3, M4, C21, n/2);
add_matrix(M5, M1, temp3, n/2);
sub_matrix(temp3, M3, temp4, n/2);
sub_matrix(temp4, M7, C22, n/2);
merge_matrix(C, C11, C12, C21, C22, n);
deallocate(A11, n/2); deallocate(A12, n/2); deallocate(A21, n/2); deallocate(A22, n/2);
deallocate(B11, n/2); deallocate(B12, n/2); deallocate(B21, n/2); deallocate(B22, n/2);
deallocate(C11, n/2); deallocate(C12, n/2); deallocate(C21, n/2); deallocate(C22, n/2);
deallocate(M1, n/2); deallocate(M2, n/2); deallocate(M3, n/2); deallocate(M4, n/2);
deallocate(M5, n/2); deallocate(M6, n/2); deallocate(M7, n/2);
deallocate(temp1, n/2); deallocate(temp2, n/2); deallocate(temp3, n/2);
deallocate(temp4, n/2); deallocate(temp5, n/2); deallocate(temp6, n/2); deallocate(temp7, n/2);
}
```
希望能够帮助到你!
阅读全文